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Keywords  Abstract 
Shear wave velocity (Vs) is one of the key geomechanical parameters effective 

in the drilling of hydrocarbon reservoirs. In this study, a novel machine learning 

(extra learning machine (ELM)) approach is developed to predict Vs based on 

four input variables obtained from well log, including neutron porosity (NPHI), 

bulk density (RHOB) and gamma-ray (GR). Two algorithms multi-layer 

perceptron (MLP) and ELM and various empirical equations (Brocher, Eskandari et al., Castagna et al. and 

Pickett) have been used to predict Vs in this paper. The results show that the performance accuracy for these 

models includes: ELM> MLP> Castagna et al. > Eskandari et al. > Pickett> Brocher. So, the result that 

shows the ELM model has higher accuracy than the other machine learning (MLP) approach and also other 

empirical equations (RMSE = 0.0444 km/s and R2 = 0.9809). Some advantages to the other artificial neural 

network approach include higher accuracy and performance characteristics, simple algorithm learning, 

improved performance, nonlinear conversion during training, no stuck in local optimal points, and it is over 

fitting. The novelty used in this paper is the type of newly implemented artificial model (ELM) and the 

number of input parameter. This approach possesses to the higher power, speed and accuracy than the 

methods used by other researchers to predict Vs. 
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Well log data 

 

4.1. Introduction 
Determination of shear wave velocity (Vs) is 

one of the key factors in the drilling operation 

design. Reservoir geomechanics is an 

important parameter in drilling engineering 

applications. It fully discloses the mechanical 

behavior of rocks in subsurface stress and 

predicts the movement potential (Kaviani-

Hamedani et al., 2021; Rhett, 1998; Wang, 

2000) it is an important parameter to reduces 

operating costs during drilling or maintenance. 

Hydrocarbon wells are known as a threat to 

their survival (Hudson et al., 2005; Sohail and 

Hawkes, 2020).  

The accuracy of developed geomechanical 

models depends on reliability of data obtained 

from mechanical tests on core samples taken 

from subsurface formations (Khoshouei and 

Bagherpour, 2021; Miah et al., 2021). Due to 

the high cost of coring operations, few oils or 

gas field wells are candidates for coring 

operation, which adverse feed data 

accessibility for researchers. Many empirical 

correlations have been developed based on 

petrophysical survey data to eliminate this 

shortcoming (Sohail et al., 2020). 

One of the most important parameters related 

to the petrophysical evaluation of rock is the 

shear wave velocity (Vs), which can be 

implemented to estimate the mechanical 

properties of the rock according to the 

compressional-wave velocity, bulk density, 
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and this parameter (Du et al., 2019; Elkatatny 

et al., 2018; Parvizi et al., 2015; Tixier et al., 

1975). 

The basic element in construction of empirical 

relationships is accessibility to the shear wave 

velocity parameter obtained from Lab studies 

(Anemangely et al., 2019). For reasons of cost 

reduction and the non-mandatory application 

of geomechanical considerations in the design 

and completion of older wells, most of the 

petrophysical survey data collected from the 

wells did not involve the use of an advanced 

sonic dipole plot (DSI) (Najibi et al., 2015; 

Wang et al., 2019). 

In addition to empirical methods and tools, 

experimental methods can also be used as a 

simple method for predicting Vs (Akhundi et 

al., 2014). Some researchers such as Brocher 

(2005), Eskandari et al. (2003), Castagna et al. 

(1993) and Pickett (1963) presented 

experimental equations to determine Vs based 

on a relationship with compressional wave 

velocity (Vp), as shown in Table 1. However, 

one of the problems with experimental 

methods is that they cannot achieve the desired 

results (Akhundi et al., 2014). 

Several studies in artificial intelligence 

techniques have been conducted to determine 

oil and gas reservoirs' geomechanical 

properties and key parameters. All these 

studies show that artificial intelligence 

methods have a higher performance, and 

accuracy when experimental regressions are 

available (Bagheripour et al., 2015; Behnia et 

al., 2017; Oloruntobi and Butt, 2020; Seifi et 

al., 2020). Many researchers have predicted Vs 

using artificial intelligence, listed below and 

reported in Table 2 (best algorithm show with 

star). 

In 2007, Rezaei et al., predicted Vs according 

to three algorithms of fuzzy logic (FL), 

artificial neural network (ANN), and adaptive 

neuro-fuzzy inference (ANFIS) based on 637 

data sets of 5 input variables including neutron 

porosity (NPHI), bulk density (RHOB), 

Gamma-ray (GR), true resistivity (RT), and 

Vp. This study shows that the best algorithm in 

this intend is FL, which has a computational 

error for this algorithm, including R2 = 0.946 

and MSE = 0.051 (Rezaee et al., 2007). 

In 2010, Rajabi et al., predicted Vs based on 

three algorithms of genetic algorithm (GA), 

FL, ANFIS according to 3030 data sets of 3 

input variables including NPHI, RHOB and 

RT. This study shows that the best algorithm is 

FL, which has a computational error of MSE = 

0.0148 and R2 = 0.951 (Rajabi et al., 2010). 

In 2015, Bagheri pour et al., constructed a 

model to predict Vs according to the support 

vector regression (SVR) algorithm based on 

information related to 4055 data sets of 7 input 

variables including RHOB, GR, photoelectric 

absorption factor (PEF), DT, RT, Shallow 

resistivity (Rs) and NPHI was used. This study 

shows that the computational error network for 

this algorithm includes RMSE = 0.0733 and R2 

= 0.971 (Bagheripour et al., 2015). 

In 2019, Mehrgini et al. predicted Vs based on 

four algorithms of Elman neural network 

(ENN), ENN-PSO, multilayer perceptron 

(MLP), MLP-PSO based on information on 

760 data sets of 5 input variables RT, ROHB, 

GR, NPHI and VP were used. This study shows 

that the computational error log for this 

algorithm includes RMSE = 0.0636 and R2 = 

0.914 (Mehrgini et al., 2019). 

In 2019, Anemangely et al. constructed a 

model to predict Vs on the basis of four 

algorithms LSSVM-GA, LSSVM-PSO, and 

LLSVM-COA based on information about 

3674 data sets, 5 input variables including GR, 

RT, NPHI, RHOB, and VP were used. This 

study shows that the computational error log 

for the best algorithm (LLSVM-COA) 

algorithm includes RMSE = 0.073 and R2 = 

0.929 (Anemangely et al., 2019). 

In 2020, Wood used six input variables, 

including GR, RHOB, NPHI, DPHI, RT, and 

VP, to predict Vs by 3 algorithms of 

transparent open box (TOB), TOB-GRG, and 

TOB-Firefly, based on data from 1000 data 

sets. This study shows that the computational 

error for the best algorithm (TOB-GRG) 

includes RMSE = 11.08 and R2 = 0.9999 

(Wood, 2020). 

In 2020, Wang et al. predicted Vs according to 
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four algorithms TOB, TOB-GRG, and TOB-

Firefly based on 2369 data from 6 input 

variables including RHOB, Cal, CNL, GR, DT, 

PERM, RS, RT, SP, and VP. This study shows 

that the computational error for the best 

algorithm (GRG) includes RMSE = 0.0917 and 

R2 = 0.990 (Wang et al., 2020). 

In this research, based on 6,000 data sets 

collected from three wells located in south west 

of Iran, and also based on the new extreme 

machine learning (ELM) algorithm, a new 

algorithm is developed with good performance 

characteristics. 

ELM is a neural network technique for 

statistical classification, regression analysis, 

clustering, approximation, comparison and 

training of the properties of a single layer or 

multilayer in a hidden node. Therefore, hidden 

node parameters are not mandatory. ELM 

advantages and features include precision and 

performance, simple learning algorithm, 

improved performance, non-linear conversion 

during training, no blocking at local sweet 

spots and overfitting. 

 
Table 1. Published common empirical correlations used to predict shear wave velocity (VS). 

Researcher(s) Proposed equations  

Brocher, (2005)   𝑉𝑠 = 0.7858 − 1.2344𝑉𝑃 + 0.7949𝑉𝑝
2 − 0.1238𝑉𝑝

3 + 0.0064𝑉𝑝
4 

Eskandari et al. (2003)  𝑉𝑠 = −1.1236𝑉𝑝
2 + 1.61𝑉𝑃 − 2.3057 

Castagna et al. (1993) 𝑉𝑠 =  1.0168𝑉𝑃 − 0.05509𝑉𝑝
2 − 1.0305 

Pickett, (1963)  𝑉𝑠 =  
𝑉𝑃

1.9⁄  

 

 
Table 2. List of researchers who researched based on different methods of artificial intelligence 

to predict Vs. 

Work 

Data description 

Techniques Statistical Error* Data 

collection 
Input variables 

Rezaei et al., (2006) 637 
NPHI, RHOB, GR, RT, 

and VP 
FL*, ANN, and ANFIS 

R2 = 0.946, MSE = 

0.051 

Rajabi et al., (2010) 3030 RHOB, RT, and NPHI GA, FL*, ANFIS 
MSE = 0.0148, R2 = 

0.951 

Bagheri pour et al. 

(2015)  
4055 

RHOB, GR, PEF, DT, 

RT, RS and NPHI 
SVR 

RMSE = 0.0733, R2 = 

0.971 

Mehrgini et al., 

(2019)  
760 

RT, ROHB, GR, NPHI, 

and VP 

ENN*, ENN-PSO, MLP, 

MLP-PSO 

RMSE = 0.0636, R2 = 

0.914 

Anemangely et al., 

(2019)  
3674 

GR, RT, NPHI, RHOB, 

and VP 

LSSVM-GA, LSSVM-PSO, 

and LLSVM-COA* 

RMSE = 0.073, R2 = 

0.929 

Wood, (2020)  1000 
GR, RHOB, NPHI, 

DPHI, RT, and VP 

TOB, TOB-GRG*, and 

TOB-Firefly 

RMSE = 11.08, R2 = 

0.9999 

Wang et al., (2020)  2369 

RHOB, Cal, CNL, GR, 

DT, PERM, RS, RT, 

SP, and VP 

PSO-LSTM*, LSTM, and 

RNN 

RMSE = 0.0917, R2 = 

0.990 

 

4.2. Material Method 
2.1. Workflow Diagram 

In Figure 1, the workflow for Vs prediction 

using both MLP and ELM algorithms is shown. 

According to Figure 1, for the first step, the 

data are collected, then to normalize the data, 

we determine their maximum and minimum 

and then normalize the data. In the next step, 

we divide the data into two parts: training and 

testing. Finally, we run the models and, after 

comparing the models using statistical 

parameters, identify the best algorithm and 

present the results.
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Figure 1. Flow diagram for shear wave velocity prediction. 

 

2.2. Machine Learning Algorithm 
Today, machine learning algorithms are widely 

used as a powerful tool for accurately 

predicting key parameters of the oil and gas 

industry with other influential variables. 

(Choubineh et al., 2017; Ghorbani et al., 2017; 

Ghorbani et al., 2020; Ghorbani et al., 2018; 

Ghorbani et al., 2019). 

In this study, two powerful machine learning 

algorithms with powerful multilayer 

perceptron (MLP) and extreme learning 

machine (ELM) have been used to develop and 

predict Vs with high accuracy and investigate 

them; these algorithms with experimental 

equations We compare. 

 
2.2.1. Multilayer Perceptron Algorithm 
Artificial neural networks (ANN) is one of the 

methods to facilitate accurate prediction of 

dependent variables and complex methods and 

equations (Ali, 1994) that, due to the variety of 

complexities of each dependent variable, 

presented different types of neural networks 

(Ghorbani et al., 2019). Reasons that increase 

the accuracy of the operation include selecting 

features (i.e., input variables to be considered), 

network architecture (number of layers and 

nodes) and the transfer of functions between 

layers, and the choice of the training algorithm. 

We use Multi-Layer Perceptron (MLP) to 

increase performance accuracy in artificial 

intelligence networks. One of the on-train 

algorithms that assist the MLP algorithm in fast 

optimization convergence is the Levenberg-

Marquardt (LM) algorithm built into this 

algorithm. For further study of this algorithm, 

refer to Ghorbani et al. (2018); Mohamadian et 

al. (2021) articles (Ghorbani et al., 2018; 

Mohamadian et al., 2021).
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Figure 2. Schematic of MLP for shear wave velocity prediction. 

 
2.2.2. Extreme Learning Machine (ELM) 

Algorithm 
Extreme learning machine (ELM) is one of the 

fastest neural networks that can reduce learning 

time, improve accuracy and increase 

generalizability (Cheng and Xiong, 2017; 

Huang, 2014). This algorithm is completely 

different from the ANN algorithm. It uses other 

optimization or diffusion algorithms because 

all the internal learning parameters of the ELM 

are randomly determined, which saves 

computational time. During the ELM training, 

the parameters of the hidden layer (weight and 

bias) do not need to be adjusted. In this 

algorithm, the output weight is determined 

using the random from a uniform inverse 

function to the hidden layer for the output 

matrix (Yeom and Kwak, 2017). The structure 

of a simple ELM (with a single hidden layer) is 

shown in Figure 3. To study more of this 

algorithm and also to reduce the additional 

content and study its exact structure, refer to 

the articles of previous researchers includes 

Rashidi et al. (2021); Yeom and Kwak, 2017 

and Huang et al., 2011 (Huang et al., 2011; 

Rashidi et al., 2021; Yeom and Kwak, 2017).

 

 
Figure 3. Schematic of single hidden layer for extreme learning machine (ELM) (Yeom and Kwak, 

2017).
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4.3. Data Gathering 
In this article, data gathered from three wells 

(wells #A, #B and #C) belonged to one of the 

oil fields in southwestern Iran. Wells #A and 

#B information was used for modelling, and 

wells #C information was used to validate the 

model. The information is for well # B (967 

data records) the depth interval 3316 to 3538 

m, well # A (942 data records) the depth 

interval 3345 to 3533 m and well # C (971 data 

records) the depth interval 3279 to 3473 m. The 

statistical parameters related to these wells are 

reported in Table 3. 

To construct artificial intelligence models and 

compare them with experimental equations, 

data related to well #A and #B (1909 data 

records) have been used to validate well #C 

(971 data records). 

The main reason for choosing two wells A and 

B for modeling for algorithms is that the data 

range in the two wells is wider than the C # 

well. Therefore, the best choice was to select 

two wells #A and #B as modeling and the well 

# C is selected as validation. 

1909 data sets are related to wells #A and #B, 

of which 70% (1336 data sets) are for training 

and 30% (572 data sets) for testing. Neutron 

porosity (NPHI); bulk density (RHOB); 

surface resistivity (RES-SHT); compression 

wave velocity (Vp); average resistivity (RES-

MED); gamma rays (GR); deep resistivity 

(RES-DEP), and gauge (CP) were the variables 

studied in this paper. This data has been used 

as input variable data for artificial intelligence. 

For validation of the algorithm, we used well 

#C. Table 3 shows statistical details obtained 

by SPSS software for total data for well #A, 

well #B, and #C. 

As can be seen in this table, the data scatter for 

wells #A and #B is greater than wells #C.

 
Table 3. Statistical characterization of data variables for all complete data (well #A, #B and #C). 

 

Parameters 

Compressio

nal-Wave 

Velocity 

Gamma 

Ray 

Bulk 

Density 

Neutr

on 

Shallow 

Resistivity 

Medium 

Resistivity 

Deep 

Resistivity 

Caliper Shear 

wave 

velocity 

- Symbol Vp GR RHOB  NPHI RES-SHT RES-MED RES-DEP CP Vs 

- Units km/s GRAPI g/cc PU Ohms-m Ohms-m Ohms-m Inches km/s 

Well #A  Mean 4.21 42.93 2.51 15.73 4.73 3.72 4.45 8.62 2.32 

Std. 

Deviation 

0.58 61.77 0.12 10.07 89.47 2.63 51.42 0.04 0.33 

Variance 0.34 3815.10 0.01 101.3

0 

8003.07 6.89 2643.24 0.00 0.11 

Minimum 2.71 1.04 2.16 3.28 0.20 0.19 0.23 8.47 1.40 

Maximum 5.19 316.27 2.93 54.65 5464.37 29.49 2189.60 8.87 3.15 

Well #B Mean 4.21 56.23 2.56 14.77 3.84 25.50 3.85 8.63 2.32 

Std. 

Deviation 

0.46 60.24 0.07 8.45 2.79 908.59 3.05 0.03 0.30 

Variance 0.21 3627.25 0.00 71.32 7.79 825241.98 9.33 0.00 0.09 

Minimum 2.72 5.67 2.21 4.23 0.71 0.14 0.70 8.50 1.46 

Maximum 5.09 587.02 2.70 54.35 14.34 46224.45 15.07 8.77 2.94 

Well #C Mean 4.63 10.02 2.57 9.39 4.53 4.67 4.71 8.58 2.49 

Std. 

Deviation 

0.31 3.22 0.05 3.11 2.63 2.64 2.88 0.01 0.16 

Variance 0.10 10.36 0.00 9.65 6.90 6.99 8.31 0.00 0.03 

Minimum 4.13 4.16 2.48 2.90 2.16 2.09 2.18 8.55 2.15 

Maximum 5.41 24.84 2.66 14.48 13.36 14.42 14.08 8.63 2.87 
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4.4. Result and Disscusion 

4.1. Feature Selection 
One of the methods used to increase the speed, 

efficiency and accuracy of performance is the 

feature selection method. When the number of 

input variables is high, this method leads to the 

best estimate of the performance of the inputs 

and avoids consecutive repetitions. In this 

article, the filtering method is used. This 

method has a higher speed and accuracy of 

performance than other methods. In this 

method, the MLP algorithm is used. Using the 

GA algorithm, first, the control parameters are 

determined. The high-performance solutions 

(minimum RMSE) are transferred to the next 

optimizer iteration, then using the MLP 

network, this minimum RMSE applies new 

iterations. This allows it to select features with 

less RMSE for each input category and select 

the best result from these input combinations. 

The feature selection process is as follows: 

First, the features are selected into categories 

of one, two, three, etc., up to eight. In the next 

step, for example in the first category, enter 

each feature as input to the MLP-GA algorithm 

and after outputting the RMSE value is 

obtained for them. Finally, the best RMSE is 

reported in Table 5. This comparison shows 

that the most effective input feature among the 

categories is Vp. For this purpose, all the data 

in the article have been used for feature 

selection. 

The main purpose of this method is to select 

and determine the optimal combination of the 

nine input variables (characteristics) listed in 

Table 4. 

 
Table 4. Catechization of input variables and 

symbol code. 

Input Variable Symbol Code 

Vp Z1 

RES-DEP Z2 

RHOB Z3 

CP Z4 

NPHI Z5 

RES-SHT Z6 

RES-MED Z7 

GR Z8 

 

The results of this feature selection are shown 

in Table 5 and Figure 4. The information in this 

table in Figure 4 and Table 5 shows that the 

error value for the four inputs has a greater 

effect on predicting the Vs value, including Vp, 

RHOB, NPHI and GR. 

 

 
Figure 4. RMSE versus number for the 

combination of input variables. 

 

 

 
Table 5. Feature selection for combination input variables. 

Number 

of input 

variables 

Input variables 
RMSE 

(km/s) 

1 Z1 0.0887 

2 Z1, Z5 0.0690 

3 Z5, Z1, Z8 0.0567 

4 Z3, Z8, Z5, Z1 (Best) 0.0539 

5 Z8, Z5, Z1, Z7, Z3 0.0547 

6 Z7, Z3, Z8, Z5, Z1, Z6  0.0556 

7 Z6, Z1, Z7, Z3, Z5, Z8, Z2 0.0576 

8 Z1, Z5, Z6, Z4, Z3, Z7, Z2, Z8 0.0605 
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4.5. Error Parameters & 

Discussion 
For comparison, the machine learning (ELM 

and MLP) and empirical equations (Brocher, 

Eskandari et al., Castagna et al., Carroll and 

Pickett) we used; measures are percentage 

deviation (PDi), average relative error (ARE), 

average absolute relative error (AARE), 

standard deviation (SD), mean square error 

(MSE), root mean square error (RMSE), and 

coefficient of determination (R2). The 

computation formulas for these statistical 

measures are expressed in Equation (1) to 

Equation (7). 

𝑃𝐷𝑖 =
𝜉(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)−𝜉(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝜉(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
𝑥 100                                                                       (1) 

𝐴𝑅𝐸 =
∑ 𝑃𝐷𝑛

𝑖=1 𝑖

𝑛
                                                                                                    

(2) 

𝐴𝐴𝑅𝐸 =
∑ |𝑃𝐷𝑖|𝑛

𝑖=1

𝑛
                                                                                                 

(3) 

𝑆𝐷 = √
∑ (𝐷𝑖−𝐷𝑖𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

𝑛−1
                                                                                       

(4) 

𝐷𝑖𝑚𝑒𝑎𝑛 =
1

𝑛
∑ (𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

− 𝜉𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)𝑛
𝑖=1                                                          

𝑀𝑆𝐸 =
1

𝑛
∑ (𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

− 𝜉𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)
2𝑛

𝑖=1                                                             (5) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                                                                   (6) 

𝑅2 = 1 −
∑ (𝜉𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖)2𝑁

𝑖=1

∑ (𝜑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−
∑ 𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

𝑛
𝐼=1

𝑛
)2𝑁

𝑖=1

                                                                
(7) 

 
Since 1909, the data is related to wells #A and 

#B. 70% of the data is related to training. The 

remaining 30% is testing. After modelling 

using artificial intelligence algorithms (MLP 

and ELM) and using empirical equations 

(Brocher, Eskandari et al., Castagna et al. and 

Pickett), information about training and testing 

and the total is given in Tables 6, 7 and 8.  

As shown in the results of Tables 6 to 8, based 

on a comparison between artificial intelligence 

algorithms and empirical equations, we 

conclude that the performance accuracy of 

artificial intelligence algorithms is higher than 

empirical equations. The comparison between 

the models shows that ELM has higher 

performance accuracy than other empirical 

equations and MLP. 

Based on the results in these tables, it is 

determined that for educational data the values 

of AARE% = 1.351 and RMSE = 0.0409 km / 

s and for test data these values include AARE% 

= 1.628 and RMSE = 0.0518 km / s and for the 

total Data include AARE% = 1.434 and RMSE 

= 0.0444 km / s.
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Table 6. Accuracy achieves for shear wave velocity prediction applied to the training dataset (70% 

of the total dataset). 

Models ARE% AARE% SD MSE RMSE  R2 

Unit (%) (%) (km/s) (km/s) (km/s) - 

Pickett 4.139 5.073 0.1562 0.0244 0.1563 0.8503 

Castagna et al. 2.448 4.126 0.1312 0.0172 0.1312 0.8504 

Eskandari et al. 2.754 4.488 0.1402 0.0196 0.1401 0.8503 

Brocher -4.266 7.759 0.2045 0.0418 0.2045 0.8506 

MLP -0.157 1.535 0.0477 0.0023 0.0477 0.9735 

ELM -0.085 1.351 0.0408 0.0017 0.0409 0.9846 

 
 

Table 7. Accuracy achieves for shear wave velocity prediction applied to the testing dataset (30% of 

the total dataset). 

Models ARE% AARE% SD MSE RMSE  R2 

Unit (%) (%) (km/s) (km/s) (km/s) - 

Pickett 3.493 4.373 0.1433 0.0206 0.1434 0.8643 

Castagna et al. 1.953 3.628 0.1224 0.0150 0.1224 0.8628 

Eskandari et al. 2.265 4.033 0.1336 0.0178 0.1335 0.8507 

Brocher -4.115 7.352 0.1987 0.0395 0.1988 0.8634 

MLP -0.338 1.812 0.0701 0.0049 0.0701 0.9544 

ELM -0.205 1.628 0.0517 0.0027 0.0518 0.9730 

 
 
Table 8. Accuracy achieves for shear wave velocity prediction applied to the total dataset (100% of 

the dataset). 

Models ARE% AARE% SD MSE RMSE  R2 

Unit (%) (%) (km/s) (km/s) (km/s) - 

Pickett 3.945 4.863 0.1524 0.0233 0.1525 0.8545 

Castagna et al. 2.299 3.977 0.1286 0.0165 0.1286 0.8542 

Eskandari et al. 2.607 4.351 0.1382 0.0191 0.1381 0.8436 

Brocher -4.221 7.637 0.2028 0.0411 0.2028 0.8545 

MLP -0.212 1.618 0.0553 0.0031 0.0554 0.9676 

ELM -0.121 1.434 0.0445 0.0020 0.0444 0.9809 

 
Figure 6 shows the values of two very 

important criteria for regression (RMSE and 

R2) of artificial intelligence models and 

experimental equations to predict shear wave 

velocity. As shown in this figure, the 

performance accuracy of ELM is much higher 

than other models of artificial intelligence 

experimental equations. In other words, 

performance accuracy can be expressed for 

artificial intelligence models and experimental 

equations as follows: ELM> MLP> Castagna et 

al. > Eskandari et al. > Pickett> Brocher. 
 

 
Figure 6. Determination of RMSE and R2 for 

four empirical equations (Brocher, Eskandari et 

al., Castagna et al. and Pickett) and two 

machine learning models (ELM and MLP) 

models (ELM and MLP)
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Figures 7 and 8 show the Predicted versus 

measured shear wave velocity (Km / s) values 

for the total data values of the #A and #B wells. 

These figures show that the ELM model 

performs better than other empirical equations 

and the MLP model. In addition, as it turns out, 

this algorithm has more power in preventing 

outlier data. The ELM model's highest shear 

wave velocity prediction accuracy applied to 

all 1909 data records were RMSE= 0.0444 and 

R2 = 0.9809.  

As mentioned in the methods It is claimed that 

this approach is fast and less time consuming 

This word fast means run time. As shown in 

Tables 9 and 10, ELM is much faster than 

MLP. Table 9 provides run time information 

for #A and #B wells training and testing data, 

and Table 10 provides run time validation 

information for #C wells. 

 
Figure 7. Predicted/Measured shear wave 

velocity comparisons for the machine-learning 

model (ELM/ MLP) applied to the complete 

well #A and #B dataset of 1909 data records. 

 
Table 9. Computer run time for #A and #B well. 

Training (s) Testing (s) 

MLP ELM MLP ELM 

98.74 66.39 23.16 14.25 

 
Table 10. Computer run time for #C well. This well is only used model validation. 

Training (s) Validation (s) 

MLP ELM MLP ELM 

N/A N/A 21.47 12.68 

 

 
Figure 8. Predicted/Measured shear wave velocity comparisons for the empirical equation model 

(Brocher/ Eskandari et al./ Castagna et al./ Pickett) applied to the complete well #A and #B dataset 

of 1909 data records.
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4.6. Data Validation for ELM 

Model 
Based on the results from the information 

related to #A and #B wells to predict shear 

wave velocity using 4 inputs from the feature 

selection method, it was determined that the 

ELM algorithm has higher performance 

accuracy than other models and MLP. Then, to 

validate the presentation algorithm, in this 

paper, information about the #C well (971 data 

records) from the same field is used, the results 

of which are presented in Table 11 and Figure 

9. 

 

 
Figure 9. Predicted/Measured shear wave 

velocity comparisons for the ELM model 

applied to the complete well #C dataset of 971 

data records. 

 
Table 11. Validation of ELM algorithm based on well #A and #B to shear wave velocity 

prediction for complete datasets of well #C. 

Models ARE% AARE% SD MSE RMSE  R2 

Unit (%) (%) (km/s) (km/s) (km/s) - 

well #C -0.035 1.624 0.0533 0.00285 0.0534 0.9681 

 

According to the results of Table 8 and Figure 

9, it can be concluded that this highly available 

and high-performance algorithm can be used 

for other wells and even other fields. 

Therefore, this is a suitable, fast, easy and low-

cost solution to determine this parameter. 

 

5. Conclusion 
In this paper, we used two machine learning 

models (ELM and MLP) and four empirical 

equations (Brocher, Eskandari et al., Castagna 

et al. and Pickett) for shear wave velocity 

prediction based on three wells (well #A, #B 

and #C) of one of the oil fields in southwest of 

Iran. To create machine learning modes, two 

well #A and #B (1909 dataset) were used to 

validate the best model used well #C (971 

datasets). 

The algorithm ELM used in this study has a 

novel algorithm that has some advantages to 

another artificial neural network: good 

accuracy and performance characteristics, 

simple algorithm learning, improved 

performance, nonlinear conversion during 

training, and no stuck in local optimal points is 

overfitting. These advantages caused this 

algorithm to separate from the other 

algorithms. 

Between eight input variables that used in this 

study; neutron porosity (NPHI); bulk density 

(RHOB); shallow resistivity (RES-SHT); 

compressional-wave velocity (Vp); medium 

resistivity (RES-MED); gamma-ray (GR); 

deep resistivity (RES-DEP) and caliper (CP), 

after feature selection found four input 

variables (Vp, RHOB, NPHI and GR) have 

best the combination of input variables. 

After dividing the data into two parts, training 

and testing, and after comparing artificial 

intelligence algorithms (MLP and ELM) and 

empirical equations (Brocher, Eskandari et al., 

Castagna et al. And Pickett), it was finally 

concluded that follows: ELM > MLP > 

Castagna et al. > Eskandari et al. > Pickett > 

Brocher. 

To validate the ELM algorithm for other wells 

and other fields, the #C well is nominated for 

this purpose. Its results show that the 

performance accuracy of this algorithm is high 

and can be used for other wells
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Nomenclature 

AARE = Average absolute relative error 

ANFIS = Adaptive neuro-fuzzy inference  

ANN = Artificial neural network 

ARE = Average relative error 

COA = Cuckoo optimization algorithm 

DSI = Sonic dipole log 

ELM = Extra learning machine 

ENN = Elman neural network  

FL = Fuzzy logic 

GA = Genetic algorithm 

GR = Gamma-ray 

GRG = Generalized reduced gradient  

LSSVM = Least-squares support-vector machines 

MLP = Multi-layer perceptron  

MSE = Mean square error 

NPHI   = Neutron porosity  

PDi = Percentage deviation 

PEF = Photoelectric absorption factor  

R2 = Coefficient of determination 

RHOB   = Bulk density  

RMSE = Root mean square error 

RS = Shallow resistivity  

RT = True resistivity  

SD = Standard deviation 

SVR = Support vector regression  

TOB = Transparent open box  

Vp = Compressional wave velocity 

Vs = Shear wave velocity 
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