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Keywords  Abstract 
The drilling of hydrocarbon wells is a process in which the drilling team deals with 

the numerous challenges to access hydrocarbon resources. Understanding the 

formation pore pressures is important to develop a successful and comprehensive 

drilling plan that minimize cost and maximize safety. This study evaluates the 

performance of some empirical models for calculating pore pressure based on 

petrophysical variables as input parameters. This research also compares the 

estimated performance of empirical models, efficiency assessment, and limitations caused by the 

petrophysical. The model presented in this study uses LSSVM-PSO artificial intelligence optimized neural 

networks as powerful tools in solving complex problems to identify complex relationship between 

petrophysical input data and the actual measured pore pressure with a modular formation dynamic 

measurement. Among the proposed network models, LSSVM-PSO, the most accurate model from 

performance and metric error, is a candidate for sensitivity analysis evaluation on 15 different classes 

categorized by type and number of petrophysical input data. The best predictive approach among the 

specified classes belongs to the classes in which gamma-ray log petrophysical data participated as input 

nodes. This study confirms the effect of gamma log data as an influential factor in estimating the formation 

pore pressure parameter using artificial intelligence sensitivity analysis to the parameters assigned to the 

input variables. As can be seen in the results, the amount of RMSE = 1.13895 and R2 = 1.0000 for class -

15 and for the total data used, which compared to other classes, these error parameters are much higher. 
Researchers in future studies can evaluate the results of this study as an efficient mathematical model. 

Pore Pressure 

LSSVM-PSO 

Feature Selection 

Sensitivity Analysis 

Hybrid Machine 

Learning 

1. Introduction 
Determination of pore pressure (pp) is one of 

the key factors in the drilling, and completion 

of oil and gas wells (Sayers et al., 2002; 

Zhang, 2011). The role of this key parameter 

is important because factors such as "drilling 

plans, subsurface geomechanical mechanical 

models, improved oil and gas recovery 

programs, and reservoir development 

strategies" depend on the precise 

determination of formation pore pressure 

(Addis, 2017; Gutierrez et al., 2006).  

Evaluating this parameter (pore pressure) and 

mentioned cases can lower risks and 

minimize drilling time and costs (Zhang and 

Yin, 2017). During the geological process, 

the sedimentary layers are stacked in layers 

over a very long time (over millions of years) 

and gradually compress the accumulation of 

heavy sedimentary loads on the buried 

formations. In compacted, impermeable 

layers enclosed in porous areas, pressurized 

structural fluids prevent potential reservoirs 

from escaping (Shi and Wang, 1986). 

Hydrostatic pressure gradually builds up in 

sedimentary formations with burial depths 

under the influence of a functional 

relationship with overpressure. (Polito et al., 
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2008).  

Factors that significantly reduce drilling 

hazards include: "Availability of subsurface 

pore pressure maps, identification of areas 

under abnormal pressure" (Rehm et al., 

2013). Therefore, the drilling program 

presented with the knowledge of determining 

the pore pressure makes these drilling 

programs more reliable (Osborne and 

Swarbrick, 1997).  

One of the oldest methods used to calculate 

pore pressure was developed by Eaton in 

1948. This method is expressed as Equation 

(1): 

 

𝑆 = 𝜎 + 𝑃𝑃 (1) 

Where: 

S = overburden pressure;  

σ = matrix stress; and,  

PP = pore pressure.  

 

Eaton (1975) presented an experimental 

equation for predicting pore pressure based 

on resistivity log as shown in Equation (2): 

 

𝑃𝑝 = 𝛿𝑣 − (𝛿𝑣 − 𝑃ℎ𝑦𝑑) (
𝑅𝑙𝑜𝑔

𝑅𝑛
)

𝑛

 (2) 

Where:  

Pp = the pore pressure;  

𝛿𝑣 = the total vertical stress;  

Phyd = the normal or hydrostatic pressure;  

Rlog is the observed resistivity log value;  

Rn = the resistivity log associated with a 

normal pore pressure profile; and,  

n = an empirical constant, for which a value 

of 1.2 is commonly used (Yoshida et al., 

1996). 

Eaton’s empirical formula for predicting pore 

pressure from sonic well log transit time 

values is expressed as in Equation (3). 

 

𝑃𝑝 = 𝛿𝑣 − (𝛿𝑣 − 𝑃ℎ𝑦𝑑) (
∆𝑇𝑛

∆𝑇𝑙𝑜𝑔
)

𝑛

 (3) 

Where:  

Pp = the pore pressure;  

𝛿𝑣 = the total vertical stress;  

Phyd = the normal or hydrostatic pressure;  

∆Tlog = the sonic log transit time value;  

∆Tn = the sonic log value when pore pressure 

is normal;  

n = an empirical constant, for which a value 

of 3.0 is commonly used (Yoshida et al., 

1996). 

Bowers constructed a model to predict pore 

pressure using effective stress. The most 

prominent objective of this work was to 

determine the effective stresses to predict the 

pore pressure. This approach used 

compaction imbalance and expansion of 

fluids as the most effective mechanisms 

affecting overpressure generation. (Bowers, 

1995). 

Mustafa et al. (2012) in 2012 based on Radial 

Basis Function Neural Network (RBFNN) 

modelling to predict soil pore-water pressure 

responses to rainfall, is used. After 

examinations, the results show that RBFNN 

is suitable for mapping pores' nonlinear and 

complex behavior (Mustafa et al., 2012). 

Atashbari et al. (2012) calculated effective 

stress via bulk density data driven from well-

log for carbonate reservoirs exist in south 

west of Iran. Variation in pore pressure while 

compaction is related to the variation in the 

porosity. Porosity is also a function of bulk 

density, which increases in compaction 

process. Progress in compaction phenomenon 

results in the reduction of pore volume, which 

raises the pressure of the fluid present in the 

porous media. Eq. (4) calculates the pore 

pressure using the compressibility of rock 

and pore (Atashbari and Tingay, 2012).  

 

Pp = (
(1 − ∅)Cbσeff.

(1 − ∅)Cb − ∅Cp
)

γ

 (4) 

Where:  

Pp = pore pressure;  

ø = fractional porosity;  

Cb = bulk compressibility in psi-1;  

Cp = pore compressibility in psi-1;  

σeff = vertical effective stress in psi; and, ɣ is 

an empirical constant, ranging from 0.9 to 

1.0.
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Keshavarzi and Jahanbakhshi (2013) 

conducted their studies on an oil field very 

close to Iran. The Arabian plate contains two 

oil reservoirs namely Asmari (Oligo-

Miocene) and Bangestan (Cretaceous) which 

are based on a backpropagation algorithm 

and a generalized regression neural network. 

This approach predicts pore pressure gradient 

in the Asmari reservoir, which is comparable 

to Eaton’s method. The study ultimately leads 

to the conclusion that the back-propagation 

algorithm and a generalized model regression 

neural network has higher accuracy than 

Eaton model (Keshavarzi and Jahanbakhshi, 

2013). 

Azadpour et al. (2015) proposed a model 

predicting pore pressure based on empirical 

approaches in a gas field located in south of 

Iran (Azadpour et al., 2015): Eaton (Eq. (2)) 

(Eaton, 1975), Bowers (velocity-based 

model) (Bowers, 1995) and the 

compressibility Atashbari and Tingay 

methods (Atashbari and Tingay, 2012) 

findings disclosed that the Eaton approach 

predicts the pore pressure more accurately 

than other approaches. Therefore, they 

constructed a model consist of three-

dimensional pore pressure. The predicted 

values for pore pressure using that 3D model 

were in good agreement with measured ones 

via a wireline-based modular dynamic tester. 

Compaction to address the challenge of 

disequilibrium applies Eq. (5) to Eq. (7) to 

resolve unloading conditions. 

 

V = 𝑉0 + 𝐴𝜎𝐵 (5) 

V = 𝑉0 + 𝐴 [𝜎𝑚𝑎𝑥 (
𝜎

𝜎𝑚𝑎𝑥
)

(
1
𝑈

)

]

𝐵

 (6) 

𝜎𝑚𝑎𝑥 = (
𝑉𝑚𝑎𝑥 − 1500

𝐴
)

1
𝐵

 (7) 

Where:  

V = velocity;  

V0 = the surface velocity (normally 1500 

m/sec);  

σ = the vertical stress; A and B are obtained 

from calibrating regional offset velocity 

versus effective stress data;  

U = the unloading parameter;  

Vmax and σmax = velocity and effective stress, 

respectively, at the onset of unloading. 

Ahmed et al. (2019) developed their study 

based on an onshore well drilled directionally 

with two different hole sizes of 8 3/8 and 5 

7/8. They used the neural network (ANN) 

based on different trails with different 

variable inputs, the best and most optimal 

inputs are selected and identified. In this 

study, drilling parameters such as weight on 

bit (WOB), rotational speed (RPM), rate of 

penetration (ROP), Mud weight (MW), bulk 

density (RHOB), porosity (φ) and 

compression time (DT) were also 

investigated. The results showed that the 

composition of drilling parameters is very 

important as data entry into the system to 

predict high-resolution pores pressure. The 

new experimental correlation was developed 

using the Optimized ANN method to estimate 

pore pressure with high accuracy (0.998 and 

average correlation coefficient Absolute 

percentage error 0.17%) (Ahmed et al., 

2019a). 

In another study in 2019, Ahmed et al. (2019) 

was conducted their study on a batch drilled 

branch of offshore petrophysical data using 

the support vector machine (SVM) algorithm. 

The wide lithological facies of different 

formations including five interbedded shales 

and sandstones at the bottom in a layer of 

carbonate at the top. They predict pore and 

fracture pressure with a determination 

coefficient (R2) of more than 0.995 (Ahmed 

et al., 2019b).  

This research efforts to propose a high-

quality intelligence model to predict 

formation pore pressure. This approach 

optimizes mathematical models by following 

the major stages and important goals and 

introduce the petrophysical gamma-ray 

dataset as an effective novel input to create 

more accurate performance on formation 

pore pressure prediction. the study conducts a 
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sensitivity analysis on each input variable on 

output variable to find a good combination 

for best accuracy. 

The LSSVM model is widely implemented 

by various researchers. However, due to the 

difficulty in identifying its parameters and its 

poor robustness and low prediction accuracy, 

researchers have proposed many methods to 

optimize and improve the LSSVM model. An 

intelligent optimization algorithm called 

Particle Swarm Optimization (PSO) is one of 

these methods. The PSO-LSSVM model has 

received a lot of attention due to its fast 

convergence speed, global optimization 

capability and high prediction accuracy, 

especially the penalty coefficient and the core 

parameters of the LSSVM intelligent 

optimization model. 

This article's main purpose is to use a new 

sensitivity analysis technique and find a new 

way to combine these parameters and achieve 

the best performance accuracy. In this paper, 

a novel LSSVM-PSO combination technique 

is used. The most prominent novelty of this 

paper is to implement a new approach to 

determine sensitivity analysis and the 

combination of input parameters to determine 

the best output result. Other novelties used in 

this paper are the combination of Particle 

Swarm Optimization (PSO) optimization 

algorithm with LSSVM algorithm, which 

causes fast convergence speed, global 

optimization ability and high prediction 

accuracy, especially penalty and nuclear 

parameters. The LSSVM-PSO model 

increases the speed and performance of this 

algorithm. 
 

2. Material method 

2.1 Flow Diagram 
Figure 1 shows the flow diagram for 

estimating the pore pressure using the 

effective factors using the LLSVM-PSO 

algorithm. Based on this, first the data are 

collected, then the data are divided into two 

training and testing subset. After determining 

and sorting the minimum and maximum of 

each input variable, the input data were 

classified into 15 different classes. In order to 

compare different classes, we use metrics (R2 

and RMSE) to compare these classes. Finally, 

by finding the best class, the aim of the study 

was to find the most effective input variable 

factors (SGR and CGR), and finally, in order 

to validate the LSSVM-PSO model, we used 

information about the two wells #B and #C. 

 

 
Figure 1. Flow diagram for pore pressure 

prediction. 

 

2.2 Machine learning algorithm 
Today, machine learning algorithms are 

widely used to construct accurate and 

applicable predictions of the variables that 

govern nonlinear and sparse relationships 

with other influencing variables, as a 

powerful tool in all oil and gas industry: 

evaluating production performance 

(Choubineh et al., 2017; Ghorbani et al., 

2017; Ghorbani et al., 2019); CO2 capture 

(Hassanpouryouzband et al., 2019a; 

Hassanpouryouzband et al., 2019b; 

Hassanpouryouzband et al., 2018a, b); 

reservoir evaluation (Ghorbani et al., 2020), 

permeability prediction (Yeganeh et al., 

2012), fracture modeling (Darabi et al., 2010) 

and EOR (Jafari et al., 2018). 

In this study, three learning algorithms, 

including Least Squares Support Vector 

Machine (LSSVM) with an optimizer 

algorithm, Particle Swarm Optimization 

(PSO), are employed to develop a hybrid 

model of predicting PP speedily with high 

accuracy

 



Journal of Petroleum Geomechanics; Vol. 4; Issue. 3; autumn 2021 

 

100 

 

2.2.1 Least squares support vector 

machine (LSSVM) algorithm 
LSSVM, developed in 1999 by Suykens and 

Vandewalle, is an interesting modified form 

of the conventional Support Vector Machine 

(SVM) (Suykens and Vandewalle, 1999).  

SVM is a robust tool in data regression 

developed by Vapnik et al. (Vapnik, 2013). 

There are two main differences by which 

LSSVM can be discriminated from SVM: i) 

LSSVM uses least square errors in cost 

function while SVM uses nonnegative errors 

ii) LSSVM solves complex mathematical 

problems and problems linearly and solves 

them easily, while SVM solves mathematical 

problems and problems in quadratic 

programming and then solves them. (Yuan et 

al., 2015). SVM expresses training in terms 

of quadratic programming (QP) system 

where a quadratic matrix determines the 

training point numbers; however, LSSVM 

expresses training data concerning the linear 

programming system. LSSVM transforms the 

QP matrices into linear programming 

matrices, thereby reducing computational 

complexity, leading to a considerable 

reduction in the computation time of the 

learning model (Kisi and Parmar, 2016). Due 

to its being more computationally efficient, 

the LSSVM algorithm has been successfully 

employed in both regression and 

classification machine learning for different 

applications such as time series prediction, 

fault diagnosis, system modelling, and 

pattern recognition (Adankon and Cheriet, 

2009; Anemangely et al., 2019a; 

Anemangely et al., 2019b; Lima et al., 2010; 

Stephen et al., 2014; Tsujinishi and Abe, 

2003; Yarveicy et al., 2014; Yu et al., 2008; 

Zheng et al., 2011). 

Considering a defined set of training data 

(𝑥𝑖,𝑦𝑖 ), 𝑖 =
1, 2, 3, … , 𝑁, where 𝑥𝑖  𝜖 𝑅, 𝑦𝑖  𝜖 𝑅, and  𝑁 are, 

respectively, the input data, output data, and 

the total number of pairs of training data, and 

𝑥 and 𝑦 are, respectively, dependent and 

independent variables, LSSVM develops 

from conventional SVM formulation as 

expressed in Equation 8: 

 

𝑦 = 𝑤𝑇𝜑(𝑥) + 𝑏 (8) 

 

Where: 

w and b = represent the weight vector and the 

bias trend, respectively; and  

φ(x) = the kernel function, which can be 

radial, polynomial, basis function (RBF), 

multiple kernels ( 

Table ).   

 

The cost function, C, for LSSVM is 

minimized using Equation 9: 

 

𝑚𝑖𝑛 𝐶(𝑤, 𝑒) =
1

2
𝑤𝑇𝑤 +

1

2
𝛾 ∑ 𝑒𝑖

2

𝑁

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑦
= 𝑤𝑇𝜑(𝑥𝑖) + 𝑏
+ 𝑒𝑖 

(9) 

Where:  

𝑦 = represent the regularized parameter 

requiring establishing a compromise between 

smoothness and the minimization of training 

error. Typically, a Lagrangian algorithm, as 

formulated in Equation 10, is used to solve 

this optimization. 

 

𝐿(𝑤, 𝑏, 𝑒, 𝛼) =
1

2
‖𝑤‖2 + 𝛾 ∑ 𝑒𝑖

2 − ∑ 𝛼𝑖

𝑁

𝑖=1

{𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖}

𝑁

𝑖=1

 (10) 

 

Where:  

𝛼𝑖 = values that can be either negative or 

positive are the multipliers of the Lagrange 

can be determined by taking a differentiate of 

Equation 12 with w, b, 𝛼𝑖, 𝑒𝑖. The optimality 

conditions for this problem can be acquired 

where all four derivatives are set equal to zero 

as shown in expressions (Equation 11-14)
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𝜕𝐿

𝜕𝑤
= 0 → 𝑤 = ∑ 𝛼𝑖𝜑(𝑥𝑖)

𝑁

𝑖=1

 (11) 

𝜕𝐿

𝜕𝑏
= 0 → ∑ 𝛼𝑖 = 0

𝑁

𝑖=1

 (12) 

𝜕𝐿

𝜕𝑒𝑖
= 0 →  𝛼𝑖 = 𝛾𝑒𝑖   ,    𝑖 = 1,2, … , 𝑁 (13) 

𝜕𝐿

𝜕𝛼𝑖
= 0 → 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦 = 𝛾𝑒𝑖     ,    𝑖 = 1,2, … , 𝑁 (14) 

Therefore; 

𝑤 = ∑ 𝛼𝑖𝜑(𝑥𝑖)

𝑁

𝑖=1

= ∑ 𝛾𝑒𝑖𝜑(𝑥𝑖)

𝑁

𝑖=1

 (15) 

Weights are linear summations of the 

Lagrange multipliers applied for dataset 

training the (𝑥𝑖). Substituting the results of 

(15) into (8) will result in Equation 16: 

 

𝑦 = ∑ 𝛼𝑖𝜑(𝑥𝑖)𝑇𝜑(𝑥) + 𝑏
𝑁

𝑖=1
= ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑁

𝑖=1
 (16) 

 
Table 1. Kernel functions are commonly applied with the LSSVM algorithm (Kisi and Parmar, 2016). 

Linear (lin-kernel) 𝑲(𝒙, 𝒙𝒊) = 𝒙𝒊
𝑻𝒙 - 

Polynomial (poly-kernel) 
𝐾(𝑥, 𝑥𝑖) = (𝑡 +

𝑥𝑖
𝑇𝑥

𝑐
)

𝑑

 
t and d are the intercepts 

and the degree of the 

polynomial. 

Radial basis function (RBF-kernel) 
𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−

‖𝑥 − 𝑥𝑖‖2

𝜎2
) 

𝜎2 is the variance of the 

Gaussian kernel. 

Multi-layer perceptron (MLP-

kernel) 
𝐾(𝑥, 𝑥𝑖) = 𝑡𝑎𝑛ℎ(𝑘𝑥𝑖

𝑇𝑥 + 𝜃) 𝜃 and k are bias and scale 

parameters, respectively. 

 

2.2.2 Particle swarm optimization 

(PSO) algorithm  
The PSO algorithm was developed by 

American scholars Kennedy and Eberhart in 

1995 (Kennedy, 1997; Kennedy and 

Eberhart, 1995). This algorithm is a 

stochastic optimization technique originating 

from analyzing a swarm of birds (Gandomi et 

al., 2013; Yang and Papa, 2016). In a 

combination of other algorithms, the PSO 

algorithm has been widely used to solve 

many nonlinear problems of the petroleum 

industry (Atashnezhad et al., 2014).  It moves 

all the individuals of a population (“swarm”) 

around, seeking a potential optimal solution. 

The PSO’s optimal solution is typically 

described as the minimum squared error 

(MSE) related to the objective function. At 

first, each swarm particle is given a defined 

random position and velocity based on their 

upper and lower limits. PSO performs several 

iterations of particles moving around to find 

the space solution. From one iteration to the 

next, each particle’s position is adjusted using 

information connected to its best personal 

position (Pb) and the best global position of 

the swarm (𝐺𝑏) related to the objective 

function. At each iteration, PSO endeavors to 

minimize the related cost function of 

objective function. (Pb) is considered as a 

distinctive feature of PSO algorithm because 

of it retaining the historical information of 
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each particle, by which the particle 

repositioning is effectively performed. For 

each irritation, particles’ velocity, (Pb), and 

(𝐺𝑏) are adjusted. The velocity of a particle 

for next iteration, (𝑉𝑖(𝑡 + 1)), can be defined 

by means of the particle’s velocity in the 

previous iteration, together with the distance 

of the particle from its best specific position, 

which is likely reached serval iteration 

before, and the current best global position of 

the particles’ population (Equation 17). The 

position of the particle for the next iteration 

(𝑥𝑖(𝑡 + 1)) is adjusted by adding the 

calculated velocity to the current position of 

the particle (Equation 18). 

 

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝐺𝑏(𝑡) − 𝑥𝑖(𝑡)) (17) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (18) 

 

Where:  

i = series making up of n elements;  

n = represents the number of particles 

forming the swarm;  

w = refers to inertia, a coefficient (weight) 

moderating the calculation of velocity for 

each the swarm’s particle, which takes values 

usually ranging from 0 to 1 (Pedersen and 

Chipperfield, 2010);  

 𝑟1 𝑎𝑛𝑑  𝑟2 = refer to two random vectors, 

𝑐1 𝑎𝑛𝑑 𝑐2 are two nonnegative cognitive and 

social acceleration coefficients, respectively 

(Coello et al., 2007).  

The 𝑐1 represents the learning adjustment for 

individual particles and 𝑐2 represents the 

learning adjustment for the population (whole 

swarm).  

The best method for establishing the values 

for weight, cognitive, and social acceleration 

coefficients is conducting trial and error tests 

on each given data set to be evaluated.    

According to the new location of each 

particle obtained using Equation 20, the cost 

(objective) function for each particle is 

recalculated for iteration (𝑡 + 1). The 

particle’s best (Pb) remains unchanged for 

iteration (𝑡 + 1) If the current cost value of 

the particle is greater or equal to its previous 

best (Pb), whereas the position of the particle 

is updated for (𝑡 + 1) if its current cost value 

is less than that of its previous one. The best 

(Gb) for the population is also updated 

according to each particle’s new location and 

the previous population’s (Gb). The 

algorithm's progress toward the optimal 

solution is monitored by retaining each 

iteration's best (Gb) locations. 
 

2.2.3 Hybrid PSO-LSSVEM machine 

learning model 
This approach is successfully applied in 

many fields. The radial- basis- kernel 

function (RBF, see table 1) is employed to 

guide the LSSVM-PSO model used for 

predicting PP in the dataset this work 

analyses. For tuning the hyperparameters 

influencing the LSSVM prediction 

performance, a PSO optimizer is used, which 

determines the optimum values for the 

regularization parameter, 𝛾,  and Gaussian 

RBF kernel’s variance 𝜎2. Table 1 shows the 

optimal values for the 𝛾 and 𝜎2 determined 

for the hybrid LSSVM model employed in 

this study.  

 
Table 2. Optimal values for Gaussian RBF 

kernel’s variance regularization parameter 

for developed hybrid LSSVM-PSO used for 

PP prediction. 

Parameters Values 

Regularization parameter (y) 0.6814 

The variance of Gaussian 

RBF kernel (𝝈𝟐) 
2.2065 

 

3. Data collection 
The information collected in this research is 

related to the data of three wells #A, #B and 

#C from one of the fields in the southwest of 

Iran, which is used for sensitivity analysis as 

well as the construction of an artificial 

intelligence network using information 

related to well #A between depths of 3665.2 
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m and 4005.2 m at a data recording interval 

of 0.2m. Information on #B between depths 

of 3321.6 m and 3523.4 m at a data recording 

interval of 0.2m and #C between depths of 

3547.0 m and 3727.0 m at a data recording 

interval of 0.2m wells has been used to 

validate. 
Use the Eaton model to determine the pore 

pressure, then use the Repeat Formation 

Tester (RFT) Downhole Direct Pressure 

Measurements to measure the pore pressure 

at depths of 3668m, 3766m, 3834m and 

3901m, then verify the data using these 

pressures. 
1700 data sets are related to well #A, of which 

85% are for training and 15% for testing. The 

data used in this study are petrophysical data 

derived from common tools (Atashnezhad et 

al., 2014; Darling, 2005; Ghasemi and 

Bayuk, 2020; Liu, 2017). Effective 

overburden pressure (δeff), pore 

compressibility (Cp), corrected gamma rays 

(CGR) adjusted for uranium recorded as part 

of the set of gamma-ray spectral curves 

(SGR; with data for the potassium (POTA), 

thorium (THOR) and uranium (URAN)), 

photoelectric absorption factor (PEF), 

formation bulk density (RHOB), sonic 

compression transition time (DT), neutron 

porosity (NPHI) and Deep Resistivity (ILD) 

logs. This data has been used as input variable 

data for artificial intelligence. For validation 

of the algorithm, we used well #A and well 

#B. Table 3 shows statistical details obtained 

by SPSS software for total data for well #A, 

well #B, and #C. 

 
Table 3. Data record statistical characterization of the variables in the complete well-log dataset for 

well #A, #B and #C. 

 

 

4. Result and disscusion 
The comparison is based on computational 

errors. These measures are percentage 

deviation (PDi), average relative error 

Well 

No. 

Parameters δeff Cp CGR SGR PEF RHOB DT NPHI ILD Pore 

Pressure 

- Units Psi 1/Psi API API Barns

/cm3 

g/cm3 µs/ft (%) ohm-m Psi 

Well 

#A  

Mean 4533.7 3.71E-06 24.2 43.7 4.4 2.96 72.1 15.3 1174.0 4744.1 

Std. 

Deviation 

335.2 2.54E-06 22.6 23.3 1.3 0.59 16.5 7.0 4282.8 351.3 

Variance 91671.7 2.41E-06 410.8 440.4 1.3 0.44 89.8 33.0 18234893.7 116148.3 

Minimum 2179.3 3.47E-06 3.5 14.6 2.3 1.61 58.5 2.8 11.8 4102.6 

Maximum 5113.3 4.48E-06 123.8 146.0 6.7 3.28 124.6 48.1 20011.4 5385.8 

Well 

#B 

Mean 4892.8 3.82E-06 54.5 38.5 5.2 3.08 79.5 12.9 825.4 4887.4 

Std. 

Deviation 

277.4 2.67E-06 31.7 18.4 2.2 0.53 16.0 8.4 3458.3 278.8 

Variance 59984.8 2.41E-06 858.4 256.4 3.7 0.43 80.5 49.8 11871386.2 72005.0 

Minimum 4403.6 3.51E-06 7.5 8.4 3.0 2.76 49.3 2.4 11.8 4484.4 

Maximum 5467.4 4.66E-06 112.7 80.7 9.1 3.39 96.7 36.1 20011.4 5553.4 

Well 

#C 

Mean 4637.7 3.80E-06 62.4 39.9 15.3 2.93 67.4 13.4 1209.6 4870.4 

Std. 

Deviation 

358.0 4.21E-06 12.0 15.4 3.2 0.54 17.0 7.2 4421.3 178.5 

Variance 105951.3 2.41E-06 94.2 171.2 8.4 0.43 99.2 35.5 19431016.1 28245.7 

Minimum 3812.2 -3.78E-05 50.8 16.0 4.7 2.12 55.8 1.4 11.9 4508.4 

Maximum 5224.8 4.31E-05 102.7 91.9 17.9 2.77 107.7 35.8 20011.4 5438.4 
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(ARE), average absolute relative error 

(AARE), standard deviation (SD), mean 

square error (MSE), root mean square error 

(RMSE), and coefficient of determination 

(R2). The computation formulas for these 

statistical measures are expressed in Equation 

(19) to Equation (25). 

𝑃𝐷𝑖 =
𝜉(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)−𝜉(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝜉(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
𝑥 100                                                                       (19) 

𝐴𝑅𝐸 =
∑ 𝑃𝐷𝑛

𝑖=1 𝑖

𝑛
                                                                                                    

(20) 

𝐴𝐴𝑅𝐸 =
∑ |𝑃𝐷𝑖|𝑛

𝑖=1

𝑛
                                                                                                 

(21) 

𝑆𝐷 = √
∑ (𝐷𝑖−𝐷𝑖𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

𝑛−1
                                                                                       

(22) 

𝐷𝑖𝑚𝑒𝑎𝑛 =
1

𝑛
∑ (𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

− 𝜉𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)𝑛
𝑖=1                                                          

𝑀𝑆𝐸 =
1

𝑛
∑ (𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

− 𝜉𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)
2𝑛

𝑖=1                                                             (23) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                                                                   (24) 

𝑅2 = 1 −
∑ (𝜉𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖)2𝑁

𝑖=1

∑ (𝜉𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−
∑ 𝜉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

𝑛
𝐼=1

𝑛
)2𝑁

𝑖=1

                                                                
(25) 

The main purpose of this method is to select 

and determine the optimal combination of the 

nine input variables (characteristics) listed in 

Table 4, which helps to minimize the RMSE 

pore pressure values. The input variables 

were divided into 15 classes, and Table 5 of 

these classifications and input variables is 

arranged separately.  

 
Table 4. Determination of input variables and 

symbol code. 

Input Variable Symbol Code 

PEF M1 

RHOB M2 

DT M3 

NPHI M4 

ILD M5 

δeff M6 

Cp M7 

CGR M8 

SGR M9 

 

 

 

 

Table 5. Classification of pore pressure 

predicted for input variable. 

Models Input variables 

Class-1 M2 and M7 

Class-2 M6 and M2 

Class-3 M3 and M6 

Class-4 M2, M3 and M6 

Class-5 M7, M6, M2 and M3 

Class-6 M5 and M6 

Class-7 M6, M7, M2 and M5 

Class-8 M3, M6 and M5 

Class-9 M2, M3, M5, M6 and M7 

Class-10 M4, M7 and M6 

Class-11 M7, M2, M6 and M4 

Class-12 M5, M3, M2, M7, M4 and M6 

Class-13 M9, M7, M6 and M8 

Class-14 M1, M2, M8, M9, M6 and M7 

Class-15 M6, M7, M8, M9, M1, M2, M3, 

M4 and M5 

 
Of the 1700 data records in the dataset for 

well #A, for each model evaluation, 1445 

(~85%) data records, spread across the full 
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pore pressure value range, are allocated to the 

training subset. The remaining 255 data, also 

records spread across the full pore pressure 

value range, are allocated to the testing 

subset. Each feature selection class is trained 

and tested with such subsets. Pore pressure 

prediction error analysis is reported for the 

Class 1 to Class 15 evaluated for the same 

training subset (Table 6) and same testing 

subset (Table 7) and with the optimum 

solution derived for each class applied to the 

full dataset (1700 data records, Table 8). The 

effective overburden pressure (δeff), as an 

inherent influencing factor of pore pressure in 

subsurface formations, is included in the 

feature selection of all classes except Class 1. 

The Classes that include just two input 

variables (Classes 1,2, 3 and 6) in their 

feature selection provide the least accurate 

pore pressure predictions in well #A. Class 6 

(δeff and ILD) provide the worst pore pressure 

prediction accuracy followed by Class 1 (Cp 

and RHOB), suggesting that these variables 

are not combining in a meaningful way to 

predict pore pressure. 

Therefore, what can be deduced from these 

classes in Tables 6 to 8 is that the 

combination of parameters such as δeff  and 

ILD for predicting pore pressure have lower 

operating accuracy. So if the input variables 

contain only these two input variables Pore 

pressure is not well predicted. 
The Classes that include just three input 

variables (Classes 4, 8 and 10) in their feature 

selection provide the least accurate pore 

pressure predictions in well #A. Class 10 (δeff, 

NPHI and Cp) provide the worst pore 

pressure prediction accuracy followed by 

Class 4 (δeff, RHOB and DT), suggesting that 

these variables are not combining in a 

meaningful way to predict pore pressure. 

Therefore, what results from these classes in 

Tables 6 to 8 is that the combination of 

parameters such as δeff, NPHI and Cp to 

predict the pore pressure have lower 

performance accuracy. So if the input 

variables contain only these two variables 

Inlet pore pressure is not well predicted.  

The Classes that include just four and five 

input variables (Classes 5, 7, 9, 11 and 13) in 

their feature selection provide the least 

accurate pore pressure predictions in well #A. 

Class 11 (δeff, RHOB, NPHI and Cp) provide 

the worst pore pressure prediction accuracy 

followed by Class 13 (δeff, Cp, CGR and 

SGR), suggesting that these variables are not 

combining in a meaningful way to predict 

pore pressure. 

Therefore, what can be deduced from these 

classes in Tables 6 to 8 is that the 

combination of parameters such as δeff, 

RHOB, NPHI and Cp to predict the pore 

pressure have lower performance accuracy. 

So, if the input variables only include this If 

the input variables are two, the pore pressure 

is not well predicted. 
Class 14, including just six variables (δeff, Cp, 

CGR, SGR, PEF, RHOB) in its feature 

selection, achieve prediction accuracy only 

slightly lower than Class 15. This suggests 

that variables DT, NPHI and ILD only 

improve the prediction performance of Class 

14 by a small amount when included in the 

feature selection of Class 15.  On the other 

hand, the inclusion of the PEF variable in 

class 14 and class 15 seems to be a critical 

factor to improve their pore pressure 

prediction performance compared to class 13, 

which offers the third-best prediction 

performance when starting with only four 

input variables (δeff, Cp, CGR, SGR). 

Class 15 feature selection with all nine input 

variables included (δeff, Cp, CGR, SGR, PEF, 

RHOB, DT, NPHI and ILD) achieves the 

most accurate pore pressure prediction of all 

the combinations of input variables tested, for 

the subsets and full dataset (Tables 6 to 8). 

The Class 15 feature selection achieves 

impressive pore pressure prediction accuracy 

(9 input variables applied to all 1700 data 

records: RMSE= 1.139 and R2 = 1) as do 

Class 14 (6 input variables applied to all 1700 

data records: RMSE= 1.663 and R2 = 1) and 

Class 13 (4 input variables applied to all 1700 

data records: RMSE= 3.634 and R2 = 0.999). 

These are the only classes to include gamma-



Journal of Petroleum Geomechanics; Vol. 4; Issue. 3; autumn 2021 

 

106 

 

ray (both CGR and SGR). 

According to the results obtained in this class, 

we find that gamma-ray has a significant 

effect in predicting pore pressure. 
Table 6. Pore pressure prediction accuracy achieved by the LSSVM-PSO algorithm applied to the 

complete dataset characterized for train data. 

Models ARE% AARE% SD MSE RMSE  R2 

Class-1 -0.08678 0.91898 67.5146 4571.85770 67.6155 0.9680 

Class-2 -0.08535 0.79969 60.2248 3613.97782 60.1163 0.9750 

Class-3 -0.06907 0.61416 48.6487 2389.72060 48.8847 0.9826 

Class-4 -0.00525 0.09859 7.94739 63.16094 7.94739 0.9995 

Class-5 -0.00014 0.06480 5.57484 31.61708 5.62291 0.9998 

Class-6 -0.32708 2.49366 173.698 30267.7125 173.976 0.7459 

Class-7 -0.00031 0.08328 6.45786 45.65087 6.75654 0.9997 

Class-8 -0.04270 0.40686 33.1248 1093.75318 33.0719 0.9925 

Class-9 -0.00049 0.06022 5.65545 27.71738 5.26473 0.9998 

Class-10 -0.05543 0.51393 39.0154 1552.84982 39.4062 0.9898 

Class-11 0.00195 0.09382 7.15455 51.00569 7.14183 0.9996 

Class-12 -0.00194 0.05861 4.83584 23.25176 4.82201 0.9998 

Class-13 -0.00449 0.04862 3.87875 15.44766 3.93035 0.9999 

Class-14 -0.00230 0.02161 1.65482 3.23865 1.79963 1.0000 

Class-15 -0.00153 0.01423 1.22154 1.51737 1.23181 1.0000 

 
Table 7. Pore pressure prediction accuracy achieved by the LSSVM-PSO algorithm applied to the 

complete dataset characterized for test data. 

Models ARE% AARE% SD MSE RMSE  R2 

Class-1 0.13541 0.98455 64.9678 4220.57467 64.96595 0.9789 

Class-2 0.22875 0.76642 63.4843 4031.01159 63.49025 0.9773 

Class-3 0.19342 0.59792 47.1257 2219.55424 47.11215 0.9865 

Class-4 0.00389 0.07591 5.86789 34.47420 5.87147 0.9998 

Class-5 0.00803 0.03184 2.89478 8.33326 2.88674 0.9999 

Class-6 0.56402 2.37889 159.836 25550.32266 159.84468 0.8282 

Class-7 0.00790 0.05178 4.41478 19.89562 4.46045 0.9999 

Class-8 0.12910 0.37792 31.8234 1013.45013 31.83473 0.9940 

Class-9 0.00586 0.02875 2.36478 5.54878 2.35558 1.0000 

Class-10 0.15649 0.49657 45.3147 2036.97747 45.13289 0.9878 

Class-11 0.00721 0.06788 5.62478 31.76059 5.63565 0.9998 

Class-12 0.00990 0.03288 2.87645 8.67099 2.94466 0.9999 

Class-13 0.00447 0.02599 2.71154 7.43141 2.72606 0.9999 

Class-14 0.00155 0.00974 0.89457 0.80454 0.89696 1.0000 

Class-15 -0.00074 0.00436 0.35586 0.19356 0.43995 1.0000 

 
Figures 2 and 3 display predicted pore 

pressure values versus measured ones 

evaluated by Classes 1 to 15 which applied to 

all 1700 data records (Table 8) for well #A. 

Classes 12 to 15 (Figure 3) stand out as the 

most accurate pore pressure prediction 

models. On the other hand, Classes 6, 1, 2, 3 

(Figure 2) and 10 (Figure 3) standouts, in that 

order, as the least accurate pore pressure 

prediction models. The lowest pore pressure 

prediction accuracies actually achieved by 

the LSSVM-PSO model applied to all 1700 

data records were for Class 6 with RMSE= 

160.860 and R2 = 0.759, Class 1 with RMSE= 

62.518 and R2 =0.869, and Class 2 with 

RMSE= 55.584 and R2 = 0.975. 

One of the factors shown in Figures 2 and 3 

is that when the SGR and CGR input 

variables are added to the input variables, the 

LSSVM-PSO model built in that class is 

more resistant to the outlier data. Give. Based 

on the results in these two figures, it can be 
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concluded that the two input variables SGR 

and CGR are two of the most influential input 

variables for predicting pore pressure. By 

comparing these two figures (Figures 2 and 

3) as well as the results in Tables 6 to 8, it can 

be concluded that classes 12 to 15 have the 

highest performance accuracy. 
The highest pore pressure prediction 

accuracies actually achieved by the LSSVM-

PSO model applied to all 1700 data records 

were for Class 12 with RMSE= 4.45850 and 

R2 = 0.9999, Class 12 with RMSE= 3.63406 

and R2 = 0.9999, Class 14 with RMSE= 

1.66396 and R2 =1.0000, and Class 15 with 

RMSE= 1.13895 and R2 = 1.0000. 

 

Table 8. Pore pressure prediction accuracy achieved by the LSSVM-PSO algorithm applied to the 

complete dataset characterized for total data. 

Models ARE% AARE% SD MSE RMSE  R2 

Class-1 -0.07419 0.78565 62.52457 3908.53013 62.51824 0.9699 

Class-2 -0.07296 0.68366 55.58364 3089.62836 55.58443 0.9754 

Class-3 -0.05905 0.52505 45.18453 2042.99774 45.19953 0.9832 

Class-4 -0.00448 0.08429 7.33355 53.99696 7.34826 0.9996 

Class-5 -0.00012 0.05540 5.19741 27.02978 5.19902 0.9998 

Class-6 -0.27962 2.13186 160.821 25876.19178 160.86078 0.7591 

Class-7 -0.00026 0.07120 6.24124 39.02742 6.24719 0.9997 

Class-8 -0.03651 0.34783 30.5634 935.06131 30.57877 0.9927 

Class-9 -0.00042 0.05148 4.86447 23.69588 4.86784 0.9998 

Class-10 -0.04739 0.43937 36.4336 1327.54795 36.43553 0.9895 

Class-11 0.00167 0.08021 6.60143 43.60531 6.60343 0.9997 

Class-12 -0.00166 0.05011 4.45664 19.87818 4.45850 0.9999 

Class-13 -0.00384 0.04156 3.63217 13.20637 3.63406 0.9999 

Class-14 -0.00196 0.01847 1.66223 2.76876 1.66396 1.0000 

Class-15 -0.00130 0.01216 1.13173 1.29721 1.13895 1.0000 

 

5. Data validation for LSSVM-PSO 

algorithm 
Based on the results of the existing LSSVM-

PSO algorithm used to predict the pore 

pressure used for well #A, it was determined 

that class 15 (not the input variable) has the 

best result for this algorithm. However, to 

validate the LSSVM-PSO algorithm for well 

#B and #C for this class, the results are 

presented in Table 9. Based on the results 

presented in this table, it is determined that 

this algorithm can be used for other wells 

with other fields. 

 
Table 9. Validation of LSSVM-PSO algorithm based on well #A to pore pressure prediction for 

complete datasets of well #B and #C. 

Models ARE% AARE% SD MSE RMSE  R2 

Well #B -0.00103 0.0245 1.12454 1.21346 1.12489 1.0000 

Well #C -0.00114 0.0214 1.16478 1.27448 1.12677 0.9999 

 

Figures 4 and 5 show the actual and predicted 

pore pressure values for validating the 

LSSVM-PSO algorithm for all well #B and 

#C data sets. According to these figures, it is 

clear that the performance accuracy of the 

LSSVM-PSO algorithm can be used to 

predict pore pressure for other wells and other 

fields and has good performance.
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Figure 2. Predicted versus measured pore pressure comparisons for the LSSVM-PSO machine-

learning-optimizer model applied to the complete well #A dataset of 1700 data records (Table 8) 

with Class 1 to Class 8 feature selections.
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Figure 3. Predicted versus measured pore pressure comparisons for the LSSVM-PSO machine-

learning-optimizer model applied to the complete well #A dataset of 1700 data records (Table 8) 

with Class 9 to Class 15 feature selections.
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Figure 4. Cross plot of predicted versus 

measured pore pressure values compared for 

the LSSVM-PSO model (trained with data 

from well #A) for information about well #B.  

 

 
Figure 5. Cross plot of predicted versus 

measured pore pressure values compared for 

the LSSVM-PSO model (trained with data 

from well #A) for information about well #C. 

 

6. Conclusion 
This paper predicts the formation pore 

pressure for three wells, #A, #B, and #C, 

present in the southwestern oil fields using 

one of the hybrid machine-learning-optimizer 

models, LSSVM-PSO. 

This algorithm (LSSVM-PSO) can produce 

accurate and robust classification results 

based on theoretical foundations, even if the 

non-uniform and nonlinear input data are 

separable and help to evaluate the relevant 

information more easily. Although LSSVM-

PSO does not provide a parameter score 

function, its local linear approximation can be 

important for understanding the mechanisms 

that link different financial ratios to a 

company's final score. For these reasons, 

LSSVM-PSOs are considered a useful tool to 

complement the information obtained from 

classical linear classification techniques 

effectively. 

To commence, we performed a sensitivity 

study by combining input variables (15 

classes) suitable to obtain an output with 

high-performance accuracy. The sensitivity 

analysis of the artificial intelligence was 

performed by the best-proven model of 

LSSVM-PSO for 15 different classes 

consisted of types and numbers of 

petrophysical data inputs. The best predictive 

performance among the specified classes 

belongs to the classes in which gamma-ray 

log petrophysical data participated as input 

nodes. This study confirms the effect of 

gamma log data as a strong factor in 

estimating the hole pressure parameter using 

artificial intelligence sensitivity analysis to 

the parameters assigned to the input nodes. 

Researchers in future studies can evaluate the 

results of this study to have an efficient 

mathematical model. Feature selection 

sensitivity analysis establishes that the 

LSSVM-PSO model incorporating all nine 

input variables provides the most accurate 

pore pressure predictions (RMSE = 1.139 psi 

for a pore pressure range encountered of 1283 

psi). It also achieves similar prediction 

accuracy when tested with data from two 

other wells drilled in the field. The results 

further indicate that the LSSVM-PSO models 

involving gamma-ray and photo-electric 

absorption factor (PEF) log-input variables 

perform better in pore pressure prediction 

than those that do not.  
Results obtained for wells #B and #C 

illustrates that the prediction accuracy of this 

algorithm is acceptable in this field. Results 

from performance accuracy for wells #B and 

#C resulted in RMSE = 1.1248 psi and RMSE 

= 1.1267 psi, respectively, which indicates 

the high performance accuracy of this model.
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