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Keywords  Abstract 
Petroleum reservoirs contain many physics that play an important role in 

multiple scales. Fluid flow and deformation of the solid-phase are the main 

physics that influence the production rate. In the present paper, the fluid 

transport and deformation of porous media are determined through separate 

frameworks on different scales. The enhanced Multiscale Multiphysics Mixed 

Geo-Mechanical Model (EM3GM) has been developed and utilized to determine the production rate of 

deformable reservoirs. The EM3GM not only contains conservative aspects of Multiscale Finite Volume 

(MSFV) in fluid flow but also develops with properties of Elastic-Plastic framework in the solid domain. 

Finally, in order to show the accuracy of the model and also to reveal the effect of the plastic deformations 

in production rate, indicative test cases were analyzed, and reasonable results were achieved. The plastic 

deformation will lead to a decrease in oil production rate with respect to energy losses during plastic 

deformation, which is closer to the real situation. The numerical results show that neglecting solid 

deformation could overestimate the production rate from one to four times higher at the earlier stage of 

production for the hard rock, and this amount would be increased for the loose rock with respect to higher 

energy loss.  

Multiscale 

Production rate 

Geomechanics 

Deformation 
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1. Introduction 

Many physical phenomena, such as flow in 

oil and gas petroleum reservoirs and 

mechanical behavior of composite material, 

occur on a wide variety of physical scales 

(Aarnes, Kippe, Lie, & Rustad, 2007). The 

fine-scale analysis of such kinds of media 

with several scales of heterogeneities is 

extremely difficult for the traditional 

methods. Therefore, with the trend of 

capturing the fine-scale effect on the coarse 

scales, Multiscale models were developed 

in different fields of physics and materials. 

Methods are based on homogenization 

theory (Kanoute, Boso, Chaboche, & 

Schrefler, 2009). In oil and gas reservoir 

fields, however, recent developments of 

geological models provide detailed 

specifications for porous media that are 

essential for accurate reservoir fluid 

simulations (Zhang & Liu, 2014). 

Implementation of the fine texture of these 
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geological aspects by conventional 

simulators is too expensive or impossible 

(Durlofsky, 2003). To fill aforementioned 

gap, various models were developed to 

upscale these geological models. 

Nevertheless, in upscaling methods, the loss 

of information caused by coarsening 

together with the lack of realistic 

assumptions about the fine-scale 

distribution of the system variables will 

result in inaccurate results (Hou & Wu, 

1997). In this paper, among various types of 

Multiscale methods, with respect to 

physical essence and locally 

conservativeness and plastic deformations, 

the enhanced Multiscale finite volume 

(MSFV) base is developed (Taheri, 2015) & 

(Sadrnejad, Ghasemzadeh, & Taheri, 

2014). This method originated from the 

pioneering idea of Babuška and Osborn 

(1983) in a finite element framework 

(Babuška & Osborn, 1983). The method 

was extended by Hou and Wu in 1997 for 

general heterogeneities in composite 

materials and porous media. Jenny and 

colleagues in 2003 applied this idea in the 

finite volume framework with a locally 

conservative nature for subsurface flow 

simulation (Jenny, Lee, & Tchelepi, 2003). 

The MSFV method provides locally 

conservative velocity fields, which is 

crucial for accurately solving the saturation 

transport equations (Jenny, Lee, & 

Tchelepi, 2003). In the recent decade, the 

MSFV framework was increasingly 

promoted from single phase to multiphase 

flow with complex physics (Jenny, Lee, & 

Tchelepi, 2004) and (Jenny & Lunati, 

2009). Furthermore, a local assumption of 

MSFV approaches the actual condition by 

implementing iterative boundary conditions 

(Jenny & Lunati, 2009). However, all of 

these developments are related to the flow 

equation. On the other hand, the 

deformation of porous media is a major 

concern in some reservoirs. Accurate 

modeling of a reservoir requires both an 

understanding of the porous flow and 

knowledge of reservoir stress and 

displacement. In this regard, many type of 

research revealed the important role of 

geomechanics in petroleum reservoir 

engineering (Sokolova, Bastisya, & 

Hajibeigi, 2019). Surface subsidence can 

damage the surface installations and 

wellbore instability and can also create 

environmental problems. So, the 

development of techniques for estimating 

soil deformation in a computationally 

efficient manner is a major concern 

(Sadrnejad, Ghasemzadeh, & Taheri, 

2014). Multiscale methods were developed 

for the simulation of porous oil reservoirs 

using lower computational costs (Taheri, 

2015) & (Sadrnejad, Ghasemzadeh, & 

Taheri, 2014). Deformations have an 

impact on the uppermost facilities, flow 

path, and production efficiency of 

reservoirs. Therefore, the Multiscale 

Multiphysics Mixed Geo-Mechanical 

Model (M3GM) was developed by Taheri 

(Sadrnejad, Ghasemzadeh, & Taheri, 

2014). In this model, solid deformations 

were calculated using elastic equations. 

Next, the effect of the surrounding rocks on 

the oil reservoir deformation in M3GM was 

developed by Sadrnejad et al, in 2014 

(Taheri, 2015), which is the base of this 

paper. Using an accurate elastoplastic 

model for calculating the deformations of 

the solid-phase of oil reservoirs could be a 

powerful tool to achieve more accurate 

results. Additionally, Taheri et al, in 2015 

discussed the combination of Multiscale 

finite-volume (MSFV) and finite-element 

frameworks for simulation of fluid transport 

and soil deformation, and they used a new 

method which was the treated dual-volume 
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boundary condition (TDVBC) (Taheri, 

Sadrnejad, & Ghasemzadeh, 2015). 

Moreover, utilizing constitutive models for 

coupling hydraulic and mechanical 

behaviors of unsaturated soils and rocks is 

an interesting subject in geotechnical 

studies. In this regard, the plastic 

framework was developed by Moghadam 

and colleagues for considering Elastic and 

plastic deformation in an implicit approach 

(Moghadam, Taheri, & Ghoreishian, 2022). 

Combining these two frameworks resulted 

from the Enhanced Multiscale Multiphasic 

Mixed Geomechanical Model (EM3GM). 

In addition, an elastoplastic model is added 

by Ghasemzadeh and colleagues for 

increasing the accuracy of (M3GM) 

(Ghasemzadeh & Sanaye Pasand, 2019). 

The Improved Multiscale Multiphysics 

Mixed Geomechanical Model (IM3GM) 

was introduced by simulating the effects of 

the surrounding area of reservoirs, and 

reasonable agreements were obtained 

(Ghasemzadeh, 2019). Finally, to estimate 

the errors in the MSFV solutions for 

continuous problems, a heterogeneous two-

dimensional problem with a continuous 

permeability field was designed and solved 

analytically by Mazlumi et al, (Mazlumi, 

Mosharaf-Dehkordi, & Dejam, 2021). In 

the present research, deformation of porous 

media is implemented in an iterative 

Multiscale framework, and the role of 

mechanical behavior of the rock reservoir 

rock in the production rate is investigated. 

In the presented framework, all advantages 

of the Multiscale framework are preserved. 

In order to have a better prediction of soil 

behavior and its effect on an oil production 

rate, a finite element method with quadratic 

elements is applied. In this paper, first, the 

governing equation and mass and 

momentum balance of fluid and solid-

phases are presented. In the second part, a 

Multiscale framework for fluid flow and 

finite element formulation of the solid-

phase is illustrated. An iterative strategy 

with the Newton-Raphson method is 

explained to clear the interaction of solid 

and fluid phases. Finally, indicative test 

cases are analyzed, and the role of plastic 

strain on the production rate is determined.  

 

2. Methodology and Approaches 

 

In this work, two compressible fluids flow 

with deformable solid skeleton are 

considered. Without loss of generality, the 

simplified form of mass conservation law 

demonstrated by Lewis & Schrefler in 1998 

is taken into account. 

 
𝐷𝑠

𝐷𝑡
(𝜙𝑆𝛼𝜌𝛼) + 𝛻(𝜙𝑆𝛼𝜌𝛼𝒘𝛼)

+ 𝜙𝑆𝛼𝜌𝛼𝛻𝒗𝑠 = 𝑚̇𝛼 

(1) 

 

Where 𝜙 is the porosity, 𝜌𝛼 the phase 

density, 𝑆𝛼 the phase saturation, 𝒗𝛼 the 

velocity of phase𝛼, relative velocity 𝒘 =
𝒗𝛼 − 𝒗𝑠and 𝑚̇𝛼denotes sink and source 

terms.  

By taking sum over all phases, and 

implementing the Linear momentum 

balance equation of fluid phases into fluid 

mass balance, one may obtain (Taheri, 

2015): 

 

𝜙
𝐷𝑠

𝐷𝑡
∑𝑆𝛼

𝑛𝑝

𝛼=1

𝜌𝛼 +∑𝑆𝛼

𝑛𝑝

𝛼=1

𝜌𝛼
𝐷𝑠𝜙

𝐷𝑡
+∑𝛻. (𝜌𝛼𝝀𝛼 . [−𝛻𝑝 + 𝜌𝛼𝑔])

𝑛𝑝

𝛼=1

+∑𝜙𝑆𝛼𝜌𝛼𝛻𝒗𝑠

𝑛𝑝

𝛼=1

= 𝑚̇𝛼 

(2) 
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where𝝀𝛼  is phase mobility tensor𝝀𝛼 =
𝑲kr𝛼

𝜇𝛼
, Κ is  the absolute permeability tensor, 

kr𝛼 is relative permeability and 𝜇𝛼 is the 

phase viscosity.  

On the other side, the equilibrium of the 

solid-phase can be described in the 

following form: 

 

𝛻. 𝝈 + 𝜌𝒈 = 0 (3) 

In above formula 𝝈 is a total stress vector. 

However, in soil mechanics effective stress 

is considered instead of total stress. The 

relation between total and effective stress is 

instated by Eq.(4).  

𝝈′ = 𝝈 − 𝑰𝑝 (4) 

Where  𝝈′ is the effective stress, 𝑰is the 

Kronecker delta tensor, and p is the fluid 

pressure By considering relation between 

strain and deformation, definition of 

volumetric strain and solid-phase velocity 

will lead (Taheri, 2015):  

𝜑
𝐷𝑠

𝐷𝑡
∑𝑆𝛼

𝑛𝑝

𝛼=1

𝜌𝛼 +∑𝑆𝛼

𝑛𝑝

𝛼=1

𝜌𝛼
𝐷𝑠𝜑

𝐷𝑡
+∑𝛻. (𝜌𝛼

𝑲kr𝛼

𝜇𝛼
. [−𝛻𝑝 + 𝜌𝛼𝑔])

𝑛𝑝

𝛼=1

+∑𝜑𝑆𝛼𝜌𝛼
𝜀𝑣𝑜𝑙
𝛥𝑡

𝑛𝑝

𝛼=1

= 𝑚̇𝛼 (5) 

 

Since two fluid phases are taken into 

consideration, two mass balances exist. 

However, phase saturations are subjected to 

the following constraint. 

∑𝑆𝛼

𝑛𝑝

𝛼=1

= 1 (6) 

 

By utilizing Eq. (6), Calculating only one 

mass balance will be adequate. 

 

3. Multiscale Multiphysics Mixed Geo-

Mechanical Model. 

Many physical phenomena occur in 

multiple length scales. So, in this research, 

the discretization is derived based on the 

Multiscale nature of the fluid flow in 

reservoirs. The basic principles and theory 

of derivation are comprehensively 

illustrated by Taheri in 2015 and Sadrnejad 

and colleagues in 2014, and interested 

readers could refer to them (Taheri, 2015; 

Sadrnejad, Ghasemzadeh, & Taheri, 2014). 

However, in a summarized manner by 

implicit Euler time discretization of Eq. (5) 

one may obtain:  

 

𝝋𝒏+𝟏

𝜟𝒕
+
−𝝋𝒏

𝜟𝒕
∑𝑩𝜶

𝒏+𝟏𝝆𝜶
𝒏𝑺𝜶

𝒏

𝒏𝒑

𝜶=𝟏

−∑𝑩𝜶
𝒏+𝟏𝜵. (𝝆𝜶

𝒏+𝟏𝝀𝜶(𝜵𝒑
𝒏+𝟏 − 𝝆𝜶

𝒏+𝟏𝒈𝜵𝒛))

𝒏𝒑

𝜶=𝟏

+𝝋𝒏+𝟏 𝜺𝒗
𝒏+𝟏 − 𝜺𝒗

𝒏

𝜟𝒕
= 𝒒𝒕 

 

(7) 

Where 𝑞𝑡 = ∑ 𝑞𝛼
𝑛𝑝
𝛼=1   is total volumetric 

sink/source term and𝐵𝛼 is formation 

volume factor (the inverse of phase 

density). 

Linearization of this equation results in the 

iterative linear pressure equation. 
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−𝜙𝑣 ∑
𝜕𝐵𝛼
𝜕𝑝

|

𝑛𝑝

𝛼=1

𝑣

⋅ 𝜌𝛼
𝑛𝑆𝛼

𝑛(𝑝𝑣+1 − 𝑝𝑣) −∑𝐵𝛼
𝑣𝛻. (𝜌𝛼

𝑣𝝀𝛼𝛻𝑝
𝑣+1)

𝑛𝑝

𝛼=1

=
−𝜙𝑣

𝛥𝑡
+
𝜙𝑛

𝛥𝑡
∑𝐵𝛼

𝑛+1𝜌𝛼
𝑛𝑆𝛼

𝑛

𝑛𝑝

𝛼=1

+ 𝑞𝑡 −∑𝐵𝛼
𝑣𝛻. (𝜌𝛼

𝑣2𝝀𝛼𝑔𝛻𝑧)

𝑛𝑝

𝛼=1

− 𝜙𝑣
𝜀𝑣
𝑣 − 𝜀𝑣

𝑛

𝛥𝑡
 

 

(8) 

 
 

The above linearized equation will 

converge to Eq. (7) while pressure iteration 

proceeds. New and old iteration levels are 

shown by superscript 𝑣 + 1and 𝑣 

respectively.  

In contrast to the work of Hajibeigy and 

Jenny in 2009, deformation of the solid 

skeleton is treated with respect to effective 

stress concept, which is essential in 

geomechanics (Taheri, 2015).  

MSFV framework relies on two imposed 

grids, namely coarse grid (solid line in Fig. 

1) and dual coarse grid (dashed line in Fig. 

1). Coarse grid includes M coarse 

cells𝜴𝑘 ∈ [1,𝑀] and dual coarse grid, 

contains N dual volume𝜴ℎ ∈ [1, 𝑁]. As 

shown in Fig. 1, the size of these two grids 

could be much larger than the underlying 

fine cells extracted from the geological 

model.  

 

 
Fig. 1:  Illustration of coarse grid (solid line), 

dual coarse grid (dashed line) and underlying 

fine grid, also shown is dual volume boundary. 

MSFV framework consists of two main 

operators. First, operator upscale the fine 

grid geological property with respect to 

integration over fine pressure obtained 

from two sets of shape function i.e., basis 

functions 𝜱𝑘
ℎ  and correction function𝜱ℎ . 

Second operators also utilize these two sets 

in order to obtain fine scale pressure and 

corresponding fine scale flow over each 

coarse volume to obtain conservative fine 

pressure with original resolution.  

However, different from the classical finite 

element these functions are not analytical 

functions but from the mathematical point 

of view, general and particular solutions of 

Eq. (8) with localized assumption.    

In a more precise illustration, basis and 

correction functions are numerical 

solutions of homogenous and in-

homogenous parts of Eq. (9) with respect to 

reduced problem boundary conditions on 

the borders of each dual, volume as shown 

in Fig. 1. 

(𝒏̃ℎ. 𝛻)((𝜆𝑡. 𝛻𝜱𝑘
ℎ). 𝒏̃ℎ) = 0 (9) 

 

(𝒏̃ℎ. 𝛻)((𝜆𝑡. 𝛻𝜱
ℎ ). 𝒏̃ℎ)

= 𝑅𝐻𝑆𝑣 
(10) 

 

Where 𝒏̃ℎ being the unit normal vector 

pointing out of 𝜕𝜴ℎ. Boundary conditions 
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are given at the dual grid nodes𝑥𝑙 

by𝜱𝑘
ℎ(𝑥𝑙) = 𝛿𝑘𝑙 , 𝜱

ℎ (𝑥𝑙) = 0 

It’s worth mentioning that other physical 

phenomena such as capillary mass 

exchange between phases, etc. could be 

treated routinely in RHS of Eq. (10) with 

the contribution of correct functions. By 

superposition of these two sets of shape 

functions, fine scale pressure could be 

achieved through the approximation: 

𝑝𝑓(𝑥) ≈ 𝑝′(𝑥) = ∑ [∑𝜱𝑘
ℎ(𝑥)𝑝̄𝑘 +𝜱ℎ (𝑥)

𝑀

𝑘=1

]

𝑁

ℎ=1

 (11) 

 

Where  are the pressure values at the  

center nodes of each coarse volume , as 

depicted in Fig. (1) Substituting Eq. (11) in 

Linearized pressure equation and 

integrating over coarse volumes and 

applying the gauss theorem leads will result 

results in an iterative nonlinear system 

(Taheri, 2015): 

𝑨𝑙𝑘𝒑𝑘
𝑣+1 = 𝒃𝑙

𝑣 (12) 

 

For  𝒑𝑘
𝑣+1with  

𝑨𝑙𝑘 =∑(∫
𝐶𝑐
𝛥𝑡

𝜱𝑘
ℎ𝑑𝛺 −∫ (𝜆𝑡. 𝛻𝜱𝑘

ℎ). 𝒏̃𝑙𝑑𝛤
𝜕𝜴̄𝑙𝜴̄

)

𝑁

ℎ=1

 (13) 

 

And 

𝑏𝑙
𝑣 = ∫ (𝑅𝐻𝑆𝑣 +

𝐶𝑐
𝛥𝑡

𝑝′𝑣)
𝜴̄

𝑑𝛺 −∑(∫
𝐶𝑐
𝛥𝑡

𝜱ℎ𝑣𝑑𝛺 −∫ 𝜆𝑡. 𝛻𝜱
ℎ𝑣 . 𝒏̃𝑙𝑑𝛤

𝜕𝜴̄𝜴̄

)

𝑁

ℎ=1

 (14) 

Implementing 𝒑𝑘
𝑣+1 in Eq. (11) results in 

the fine scale pressure value𝑝′𝑣+1. The 

iterative procedure is continued until 

convergence obtains. i.e., ‖𝑝′𝑣+1 − 𝑝′𝑣‖ <
𝛽, where 𝛽 is the convergence limit. 

However, this pressure field is not 

conservative, which is crucial for solving 

transport equations, so further steps are 

needed. As already mentioned, this 

pressure filed is applied in order to obtain 

fine scale flow over each coarse volume. In 

a detailed statement, Eq. (8) is solved with 

the Neumann boundary condition obtained 

from a fine scale pressure field, i.e.,𝑝" 
which is used for solving saturation 

equation.  

  

 4.Solid-phase discretization and 

Elastoplastic framework 

 

In order to discretize soil momentum 

balances i.e., Eq. (4) standard Galerkin 

method is applied. Neglecting body force 

and considering boundary conditions, and 

utilizing finite element formulation, which 

results in the nonlinear system: 

For 𝒖̑ with

kp

kx
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𝑲 = [∫𝑩𝑇

𝛺

𝑫𝑒𝑝𝑩 𝑑𝛺] (15) 

And 

 

𝑭 = −∫ 𝑵𝑢
𝑇

𝛤𝑁
𝑡̄𝑑𝛤 + ∫𝑩𝑇

𝛺

(𝑝𝒎)𝑑𝛺 (16) 

 

Where 𝒖̑is deformation vector, 𝑩is the 

consistent tangent of the skeleton 

multiplied by shape functions,  𝑫𝑒𝑝 is 

Elastoplastic modules matrix, Matrix 𝑲 and 

the first term on the RHS is calculated by 

conventional finite element method. 

Second term on the RHS, namely F2 is 

obtained by integrating over all fine cells 

encapsulated in each course volume.  

𝑭2 = ∑ 𝐵𝑖
𝑇

𝑖=𝑛𝑓𝑠

𝑖=1

𝑝𝑖. 𝑚. 𝐴 (17) 

 

In the above formula 𝑝𝑖 is fine scale 

pressure and 𝐴 is the area of each fine 

cell. The EM3GM is nonlinear since the 

value of integral is calculated via pressure 

obtained based on previous deformation 

status. The basic principles and detailed 

procedure of discretization are 

thoroughly explained in the ref. (Taheri, 

2015).  

In this research, Newton-Raphson 

method is applied in each sequential loop 

which will be explained in the next 

section. Moreover, the deformations in 

soils and rocks are both elastic and 

plastic. In the previous framework 

developed by Taheri, 2015 and 

Sadrnejad, 2014, the elastic strains were 

taken to account. In this research, 

however, not only will the elastic strain 

be considered in the present framework, 

but also the plastic strain will also be 

regarded in a systematic approach. In this 

regard, the plasticity theory was enhanced 

with a sub-loading surface developed by 

Moghadam and colleagues (Moghadam, 

Taheri, & Ghoreishian, 2022). will be 

employed. However, based on the 

plasticity theory, strains are decomposed 

in the elastic and the plastic portions. 

 

𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝 (18) 

 

In the following, volumetric modulus 𝐾 

and shear modulus 𝐺are defined to 

introduce the elastic behavior of the 

model: 

 

𝐾 =
𝑣𝑝′

𝑘
 (19) 

 

𝐺 =
3(1 − 2𝜇)

2(1 + 𝜇)
𝐾 (20) 

 

In mentioned equations, 𝑣 = (1 + 𝑒) is 

the specific volume, 𝑘 is the loading – 

unloading line slope in the 𝑣 −
𝑙𝑛 𝑝′plane, and 𝜇is the Poisson’s ratio. In 

the present model, to predict and simulate 

the behavior of the rock accurately, the 

concept of bonding surface plasticity has 
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been utilized for a smooth transition from 

elastic to plastic state of the rock. Based 

on bonding surface plasticity, the plastic 

deformations are taken place readily after 

loading. According to this theory, the 

present model employs an inner surface 

(as the loading surface) and an outer 

surface (as the bonding surface), with the 

current stress point always passing 

through the loading surface. A radial 

mapping rule is used to place the image of 

the current stress point on the bonding 

surface. Fig. 2 shows the loading and 

bonding surfaces on the 𝑞 − 𝑝′ space. 
 

 
Fig. 2: Loading and bonding surface and 

radial mapping rule 
 

 

It is assumed here that the loading surface 

and the bonding surface have a similar 

shape and are defined by the unified yield 

function: 

𝐹(𝝈, 𝑝𝑐) = (
𝑞

𝑀𝑝′
)
𝑁

+
𝑙𝑛(

𝑝′

𝑝𝑐)

𝑙𝑛( 𝑅)
 

(21) 

   

Due to the similarity of the loading 

surface and the bonding surface, the 

image stress point on the bonding surface 

can be calculated using the similarity 

ratio: 

𝛾 =
𝝈

𝝈𝑏
=

𝑝𝑐
𝑝𝑐𝑏

=
𝑝′

𝑝𝑏
′ =

𝑞

𝑞𝑏
 (22) 

  

In the above equation 𝛾 defines the ratio 

between the size of loading and bonding 

surfaces, and it is known as a similarity 

ratio. The similarity ratio will be 

determined based on the distance between 

the loading surface and the bonding 

surface to create plastic strains. To this 

end, an evolution rule was considered for 

the similarity ratio according to following 

equation: 

 

𝑑𝛾 = −𝑈 𝑙𝑛( 𝛾)‖𝑑𝜺𝑝‖
= −𝑈 𝑙𝑛( 𝛾)𝑑𝜆 

(23) 

 

Where 𝑈is a material constant and 𝑑𝜆 is 

the plastic multiplier.  

The implementation of the constitutive 

models needs numerical integration 

schemes. From a computational point of 

view, the implicit integration scheme 

based on the return mapping algorithm 

has been employed owing to its 

convergence and stability when 

compared to other schemes. 

There are two steps to this algorithm: 

elastic predictor and plastic corrector. 

The following is a more detailed 

description of this algorithm: 

 

i. Elastic predictor phase:  

 

In the elastic predictor phase, the stress is 

calculated based on elastic behavior at the 

beginning of each time step 
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corresponding to the relevant strain. 
𝝈𝑡𝑟𝑖𝑎𝑙 = 𝝈𝑛 +𝑫𝑛+1. 𝑑𝜺𝑛+1 (24) 

  In the above equation, 𝑛 + 1 

corresponds to the current time step and 𝑛 

is related to the previous time step. 𝝈𝑡𝑟𝑖𝑎𝑙 
is the stress predictor of the elastic state, 

and it is the trial stress. In the next step, 

this stress should be modified in the 

plastic corrector phase based on elastic-

plastic equations. 𝑫𝑛+1 is the elastic 

modulus matrix in the current step. 

 

ii. Plastic corrector phase: 

 

In this phase, the trial stress that was 

calculated in the previous step should be 

modified with respect to the flow rule, 

hardening rule, and also the evolution rule 

in a way that consistency conditions will 

be satisfied. 

 

Equilibrium equation: 
𝝈𝑛+1 = 𝝈𝑛 +𝑫𝑛+1(𝑑𝜺𝑛+1

− 𝑑𝜺𝑛+1
𝑝

) 
(25) 

 

Hardening rule: 
𝑝𝑐𝑏,𝑛+1

= 𝑝𝑐𝑏,𝑛 𝑒𝑥𝑝 (
𝜐𝑛

𝜆 − 𝜅
(𝑑𝜀𝑣

𝑝)
𝑛+1

) 
(26) 

 

Evolution rule: 

 

𝛾𝑛+1 = 𝛾𝑛 − 𝑈 𝑙𝑛( 𝛾𝑛+1)𝑑𝜆 (27) 

 

Loading surface function: 
𝐹(𝝈𝑛+1

′ )

= (
𝑞𝑛+1

𝑀𝑐𝑟𝑝𝑛+1
′ )

𝑁

+

𝑙𝑛 (
𝑝𝑛+1
′

𝛾𝑛+1𝑝𝑐𝑏,𝑛+1
′ )

𝑙𝑛( 𝑅)
= 0 

(28) 

 

Finally, fulfillment of Eq. (36-39) 

simultaneously will result the nonlinear 

system of equations with ahead 

unknowns[𝝈𝑛+1, 𝑝𝑐𝑏,𝑛+1, 𝛾𝑛+1𝑑𝜆]. The 

mentioned system of equations will be 

solved by employing the Newton-

Raphson method. The procedure of 

solving the system of equations is 

illustrated in the table. The stress 

calculation procedure using the Euler 

implicit scheme is depicted in Fig. 3. 

The basic principles and theoretical 

background are comprehensively 

explained by the author in ref. 

(Moghadam, Taheri, & Ghoreishian, 

2022) and the interested reader could 

refer to them to understand the basic 

parameters and their roles.  

 

 

 
 

Fig. 3: Return mapping projection 

 

5. Framework interaction  

 

The iterative two-way solution method is 

used to create the interaction between the 

framework of the Multiscale and the 

finite element method. In this regard, the 

fluid and solid equation system are 

connected by the Newton-Raphson 

iteration loop. The converged Multiscale 

pressure is used to input the finite element 

method, which is used in the space of 

finite element cells.  For convergence, the 

calculated pressure equations return to the 

calculation cycle.  At the beginning and 
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after each time step, in the first stage, the 

phase mobility capability is controlled. 

After controlling this value and if the 

phase mobility threshold value exceeds 

its allowable limit, Basic functions are 

recalculated and updated. If a phase 

mobility change is within the allowable 

range, the problem enters the coupling 

loop of the other two phases, liquid and 

solid.  After this operation and extraction 

of the main functions, the system of 

equations is formed, and a coefficient 

matrix is obtained. Next, large-scale 

pressures are extracted, and then the fine 

scale pressure is obtained, this is where 

the Elastoplastic framework comes into 

account. The output of the mass balance 

equation is pressure. The output of the 

equilibrium equation is the phase 

deformation of the solid-phase. In the 

basic M3GM model, this deformation 

was returned to the mass equation to 

converge. However, in the present paper, 

plastic strain is also calculated based on 

the theory of plasticity, as mentioned in 

section 4. In this regard, the state of the 

stress is controlled within the sub-loading 

surface. In order to have an overview of 

the procedure, the algorithm of fluid flow 

interaction with the deformable porous 

media is shown in Fig. 4 

. 

 
EM3GM Pseudo Code Eqs. 

Start of simulation 
n = 1 
do 
     Loop I: Timestep 

     
𝒗𝒄 = 𝟏,𝒑𝒗𝒄 = 𝒑𝒏 

     do 
          Loop II: Nonlinear Newton iterative 

coupling 

          
𝒗𝒑 = 𝟏:𝒑𝒗𝒑 = 𝒑𝒗𝒄 

         do 

              Loop III: Pressure iteration 

              Update correction functions 
              Solve linearized pressure equation 

               ⇒ 𝒑𝒗𝒑+𝟏 

               
𝒗𝒑 = 𝒗𝒑 + 𝟏 

         Until (convergence of nonlinear pressure 

equation) 

          Geo mechanical plastic system 

         Solve deformation equation 

         Plastic corrector phase 

         Calculate volumetric strain and updating 

porosity 

                 𝒑
𝒗𝒄+𝟏 = 𝒑𝒗𝒑 

     Until (convergence of system of pressure and 

geo-mechanical system) 

     Construct conservative fine fluxes 

      
     Solve transport equation 

         𝑺𝜶
𝒏+𝟏 = 𝑺𝜶

𝒏 
Until (end of simulation) 

 

 

 

 

 

 

 

 

 

 

(11-14) 

 

 

 

 

 

 

(25-28) 

 

 

Fig. 4: The algorithm of fluid flow interaction with the deformable porous media
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6. Numerical results 

 

6.1. Five-spot multiphase flow with 

deformation in homogeneous porous 

media 

As a first test case, water injection in oil 

reservoirs is studied. In this case, a square 

domain (44 x 44 m) with absolute 

permeability K=2.5×10^(-13) m^2, and 

it’s initially saturated with oil (S_o=1). 

As shown in Fig. 5, the water is injected 

in the lower-left corner, and production 

occurs in the upper right corner. Each 

coarse cell contains 11x11 underlying 

fine cells, so a coarsening factor of121 is 

considered. The oil-water viscosity ratio 

is 5. The initial and boundary condition 

and also geo-mechanical properties of the 

reservoir rock and fluid are shown in table 

1. 

To control the accuracy of the model, the 

pressure field obtained from the present 

model fine-scale simulation is shown in 

Fig. 6. It is clear from the figure 6 that the 

trend and also amount of the pressure 

filed obtained from the Multiscale model 

(Left contours) are in good agreement 

with fine-scale simulations (right 

contours). It is also form this figure that 

the pressure field is higher around the 

injection well, and increases while the 

injection precedes (from 0.01 Pore 

Volume Injection (PVI) to 0.1 PVI).  

 
Table 1. The fluid specification and geo-mechanical parameters of the porous media 

𝑲 𝑬 𝝊 𝝁𝒘 𝝁𝒐 𝝆𝒘 𝝆𝒐 𝝓 𝑺𝒐 

𝟐. 𝟓 × 𝟏𝟎−𝟏𝟑𝒎𝟐 5𝐺𝑃𝑎 0.2 10−3𝑃𝑎. 𝑠 5 × 10−3𝑃𝑎. 𝑠 1000
𝑘𝑔

𝑚3 950
𝑘𝑔

𝑚3 0.2  

 

 
Fig. 5: Setup of the five-spot waterflood 

problem with a coarsening factor of 121 

Moreover, in order to compare the effect 

of deformation, two simulations were 

carried out. In the first simulation, 

deformation is neglected, and only 

mechanical flow in porous media is taken 

into account. In the second case, however 

deformation is taken into consideration. 

Fig. 7 shows oil production rate for both 

compressible and incompressible porous 

media. First, to verify the present model, 

the result obtained from the previous 

version of the model (M3GM) is 

compared with the fine-scale simulation 

obtained from the Ghoreishian model 

(Ghoreishian, 2012) (Left side). It is 

evident from this figure that results are in 

reasonable agreement. Moreover, it is 

detectable that considering deformation 

will lead to a lower production rate. The 

reason is, that some portion of injection 

energy is dissipated through deformation. 

In this regard, the production in 

incompressible porous media simulation 

(no energy loss) is overestimated which 

could lead to an unrealistic production 

plan. Furthermore, to compare the 

difference between the elastic and the 

plastic deformation, the related results 

1
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from M3GM (considering elastic 

deformation) and EM3GM (considering 

elastoplastic deformation) are shown in 

Fig. 7 (Right side). As shown in this 

figure, when plastic deformation is 

regarded as close to the real situation, the 

oil production rate decreases. The reason 

is that the energy loss is increased when 

plastic deformation is contemplated.  

 

 
Fig. 6: pressure field obtained from fine-scale 

simulation using 44x44 fine cells (right) And 

from EM3GM using 4x4 coarse cells (left) 

after 0.01PVI (top) and after 0.1PVI (bot.) 
 

 
Fig. 7: production rate in undeform able 

and deformable reservoir M3GM (Left), 

EM3GM (Right) 

 

6.3. Subsidence in heterogeneous porous 

media 

In the previous section, homogeneous 

porous media was regarded. However, in 

order to show the capability of the model 

the EM3GM results will be evaluated in 

forthcoming cases. In this regard, the 

permeability pattern of SEP10 and related 

young’s modulus and relative 

permeability that are addressed by 

Sokolova et al. is considered (Sokolova, 

Bastisya, & Hajibeigi, 2019). The contour 

of Young's modulus and relative 

permeability is shown in Fig. 10.   The 

constant loading of 100 Pa is 

implemented at the top of the porous 

media, and the Poisson’s ratio of 𝜐 = 0.2 

is regarded. The initial fluid pressure is 

100 Pa that is distributed to the entire 

domain. As shown in Fig. 10, the roller 

constraint is applied in three directions 

while, at the north side, the Newman 

boundary condition is contemplated. The 

mechanical and hydro-mechanical 

boundary conditions are also shown in 

Fig. 10. The resulting pressure and 

corresponding deformation in Y direction 

at 𝑡 = 0.06𝑠 are depicted in Fig 11. The 

fine scale simulation and EM3GM results 

are shown on the left and right sides, 

respectively. It is observed from this 

figure that not only the pressure field is in 

good agreement with the fine pressure, 

but also deformations have the same 

pattern. It is also obvious that neglecting 

solid deformation could overestimate the 

production rate from one to four times 

higher at the earlier stage of production 

for the hard rock. It is worth mentioning 

that in this case, the hard rock was 

regarded, and the plastic energy loss was 

at a minimum value. So, it is expected 

that if looser rock is contemplated, the 
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production rate will be more influenced. 

 

 
Fig. 10: mechanical and hydro 

mechanical boundary conditions 

 

 

Fig. 11: Simulation results for 

compaction of heterogeneous media. the 

comparison of the reference fine-scale 

(FV) solution for pressure and Y 

displacement with the corresponding 

Multiscale solutions obtained with 

EM3GM method 

 

7. Conclusion 

 

Mature oil management and development 

of new fields are in need of reservoir 

simulations. With respect to the 

Multiscale nature of reservoir rocks and 

considering any physical phenomenon in 

its region of influence, the Enhanced 

Multiscale Multiphysics Mixed Geo-

Mechanical Model (EM3GM) for precise 

simulation of the production rate is 

presented. By simulation with (EM3GM) 

not only is the Elastic and Elastoplastic 

deformation of reservoir rock, but also the 

surrounding rock is incorporated. It is 

shown by the model that neglecting the 

reservoir deformation will overestimate 

the production rate and could mislead the 

production strategy. Moreover, the role of 

considering plastic deformation in 

production is also revealed. It is also 

determined that when the plastic 

deformation is regarded, which is close to 

the real situation, the production rate will 

be decreased.  This fact could be 

explained with respect to energy loss 

during plastic deformation.
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NOMENCLATURE 

 

A Fine cell area                                  

  𝒖     Vector of deformation                                                 

𝐵𝛼   Formation volume factor                                      𝒗𝛼     Fluid phase velocity                                                                                                                                                          

𝐶𝑐    Compressibility coefficient                                  𝒗𝑠     Solid velocity                                                         

𝐶𝑣   Coefficient of consolidation                                  𝒘      Relative velocity 

𝑫𝑒𝑝     Module’s matrix                                                 𝑾𝑢
𝑡     Domain weighted function 

 E      Elastic module                                                      𝑾̄𝑢
𝑡    Boundary weighted function 

𝜀𝑣𝑜𝑙  Volumetric strain 

𝜱𝑘
ℎ    Basis function 

𝜱𝑘
ℎ    Basis function 

  𝜴𝑘    Coarse cell 

𝜴ℎ   Dual volume 

𝜑      Soil porosity    

𝜐      Poison ratio 

𝜇𝛼   Phase viscosity 

𝑰       Identical tensor  

Κ       Absolute permeability tensor  

 𝛽     Convergence limit                                                       

 𝜺      Strain vector 

𝜌𝛼    Fluid phase density      

𝑚̇𝛼    Sink and source fluid mass                                   

𝑵𝑢    Shape functions                                                    

𝒏̃ℎ   Unit normal vector                                                  

𝑝       Fluid pressure                                                       

𝑝′     Dual fine pressure                                                

𝑝"     Conservative fine pressure                                    

𝑆𝛼    Fluid phase saturation                                           

t       Time                                                                       

𝝈′      Effective stress                      

𝝀𝛼     Phase mobility tensor 
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