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Keywords  Abstract 

Non-coaxiality plays a key role in modelling of problems with significant 

stress rotation in soil mechanics. This will be more crucial in types of soils 

or granular materials with anisotropy. Many of the constituent rocks of oil 

and gas reservoirs are of the anisotropic type, so considering anisotropy in 

the study of oil reservoirs will have special significance. Neglecting to 

account for stress and strain non-coaxiality would result in errors and 

overestimating soil capacity. A mathematical solution is developed and 

applied within the framework of multi-laminate model, to deal with this issue. Selecting multi-laminate 

frame as the base of the model facilitates consideration of anisotropy with less mathematical effort. In 

addition, tracing fabric evolution may be much easier in this framework. Concept of stress and strain vector 

fields are introduced for shear components of planes, and in contrast to ancestor multi-laminate models, 

shear stress is calculated through this concept for each plane in the proposed model. Using this method, 

non-coaxiality may be considered on planes, and consequently the integrated result of plane stresses will 

be non-coaxial as well. Finally, to apply the model for greater problems, a code is developed to introduce 

the new model to FE program, Opensees. The program is implemented for analyzing an experimental plane-

strain loading test of an anisotropic dense specimen of Toyoura sand. The results show a good agreement 

between theory and experiment. 
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1. Introduction 
Rocks and soils in nature are often anisotropic. 

In various industries that deal with the natural 

materials of rocks and soils, having an anisotropic 

mechanical behavior model is always necessary. 

For example, in drilling oil and gas reservoirs, 

considering an appropriate mechanical model to 

predict the behavior of anisotropic rocks can 

greatly assist in proper wellbore design. 

Additionally, in enhanced oil recovery methods 

that require hydraulic fracturing of wellbores, 

predicting the direction of created fractures 

necessitates knowledge of the mechanical 

behavior of anisotropic rocks. In mining 

operations, finding the optimal mining path, 

which is shorter and safer, requires knowledge of 

the appropriate mechanical behavior model for 

anisotropic rocks. In other industries, such as 

tunneling and deep-water well drilling, similar 

conditions prevail as well. The surrounding 

environment, which can consist of rock, soil, or a 

combination of them, has constantly been 

subjected to various stresses such as tectonic 

stress, overburden stress, thermal stress, or even 

fluid pressure throughout the years. As a result, 

the structure of these environments often changes 

to anisotropic state over long periods, making the 

prediction of their mechanical behavior 

challenging. For example, in the upstream oil and 

gas industry, successful application of advanced 

methods such as hydraulic fracturing in different 

fields relies on employing suitable models to 

predict the mechanical behavior of the reservoir 

rock [1]. If the behavior model used in hydraulic 
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fracturing studies cannot consider the anisotropic 

properties of the reservoir rock and the variable 

nature of applied stresses, finding the optimal 

location for hydraulic fracturing and creating 

fractures in the desired direction becomes difficult 

or leads to operational challenges. In such cases, 

besides anisotropy, the non-coaxiality of principal 

stresses at various points in the surrounding 

environment and their rotational directions can 

also influence the behavior of rocks or soil. Most 

of the problems in geotechnical engineering, 

encounter with variable stress paths. Direction of 

principal axes of stress tensor is not kept constant 

in real problems. Applied stresses in a problem 

may change in magnitude and direction 

simultaneously during loading process. Both of 

these factors have a significant impact on instant 

and permanent deformation of granular material. 

Experimental evidences show that, even with 

constant magnitudes of principal stresses, rotation 

of principal axes changes the fabric of grains, and 

cause some displacements and deformations in the 

texture of the material [2]. Yang and Yu [3] 

compared the results of coaxial and non-coaxial 

models for foundation settlements and soil 

bearing capacity under different loading and 

boundary conditions. They found that settlement 

of a footing is much more when non-coaxiality 

between stress and strain rate is taken into 

account. Discrepancies between the results of the 

two models significantly increase with increasing 

rotation of principal axes of stress. Therefore, lack 

of attention to non-coaxiality may lead to non-

conservative design of foundations [3]. 

Gräbe and Clayton [4] investigated soil 

foundation of rail tracks. They showed that a real 

evaluation of total life cost of such foundations 

directly depends on the repeated principal stress 

rotation applied by trains. In addition, they 

explained in detail, the importance of considering 

principal stress rotation in evaluating permanent 

displacements of soil foundations of rail tracks. 

The importance of use of more appropriate testing 

methods such as the cyclic simple shear apparatus 

or the cyclic hollow cylinder is highlighted in the 

above mentiond study as well. Other experimental 

observations also indicate that a significant plastic 

deformation happens during principal stress 

rotation, while the magnitudes of principal 

stresses are kept constant. Hollow cylinder test 

results suggest that volumetric strain during 

rotational shear tests is usually contractive, and 

the soil sample approaches a stable state after a 

couple of cycles [5]. These results also indicate 

the non-coaxiality between stress and strain, and 

show that the non-coaxiality significantly depends 

on the stress ratio. 

While principal axes of stress tensor rotate, 

strain tensor axes rotate simultaneously, with a 

different rate, resulting in non-coaxiality. As just 

described above, the importance of non-coaxiality 

is clear enough. It has been one of the major 

concerns of the geotechnical engineers for 

decades. Due to the dependency of conventional 

models to stress tensor invariants, they are not 

capable to consider principal axes rotation. In 

such models, it is assumed that coaxiality exists 

between the directions of principal stresses and 

plastic strain increments. Therefore, it limits the 

application of these models only to cases in which 

stress axes do not rotate [6]. In order to come up 

with this issue, researchers have proposed some 

solutions through applying modifications to the 

existing models. According to some specifications 

of multi-laminate models, they are among the first 

choices to account for principal axes rotation. 

Based on the multi-laminate model, Bažant 

and Oh [7] developed a new method to calculate 

the behavior of brittle geomaterials which 

experience progressive tensile fracturing or 

damage. The response of the proposed model was 

path dependent. Using multi-laminate as the 

foundation of model allows to apply rotation of 

principal axes to the problems with progressive 

fracturing, and hence, tensorial invariance 

restrictions are captured by the multi-laminate 

outline. 

Borja et al., [8], utilizing a numerical algorithm 

for tensor invariants, developed a new plastic 

isotropically hardening model. They were 

irrespective of the anisotropy characteristics of the 

materials, which might affect the results. Li and 

Dafalias [9] studied anisotropic materials in a 

research program. In this study, they used a 

modified form of critical state soil mechanics, to 

describe a plasticity constitutive model for 

inherent anisotropic sand behavior. Fabric of the 

inherent anisotropic material is mathematically 

presented by a second-order symmetric fabric 

tensor, Fij, in this model. A scalar-valued 

parameter "A" is introduced to the model, to 

calculate anisotropy effects. This parameter is 

defined in terms of invariants of fabric and stress 

tensor. The variation of the critical state line 

geometry in the plane of void ratio and effective 

mean normal stress is determined by "A". In other 
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words, all other soil mechanical parameters will 

be a function of "A" , as well. In a similar study, 

Gao et al. [10] developed another failure criterion 

for geomaterials. This model is capable to take 

into account the effect of cross-anisotropy. The 

failure criterion depends on the frictional 

coefficient, and it varies in different directions by 

changing this coefficient. Frictional coefficient in 

this model is defined as a function of an 

anisotropic variable such as the previously 

mentioned A. 

The impact of inherent and induced anisotropy, 

and variation of material fabric in different steps 

of loading, has never been the study subject of any 

of the above models. In spite of the very few 

theoretical studies in this regard, a considerable 

number of experimental studies on rotation and 

non-coaxiality between stress and strain has been 

implemented. Miura et al. [2] have done a lot of 

research on sand behavior and deformation under 

the impact of cyclic and rotational loading. Also, 

a series of drained tests on anisotropic dense sand, 

using hollow cylinder, have been done by other 

researchers. They showed that shear deformation 

under rotational stress loading is greater, 

compared to fixed axis stress [2,11,12,13,14]. 

Moreover, these studies have proven that the 

impact of inherent anisotropy of material on shear 

deformation and volumetric variations of the 

sample, with rotational and cyclic loading, is more 

than that on fixed axes mode. Thus, the 

importance and necessity of simultaneously 

considering anisotropy and the impact of stress 

axes rotation can be seen more than ever. Other 

researchers also studied behavior of different 

sands in rotational and cyclic loadings, using 

hollow cylinder. All the results proved non-

coaxiality between stress and strain and the 

necessity of considering the anisotropy of material 

during the rotation of principal stress axes [11, 12, 

15, 16, 17]. 

In this study, in addition to the modification of 

multi-laminate models, a new method for 

considering the rotation of stress or strain axes and 

involving non-coaxiality in anisotropic materials 

have been presented. Upon explaining the method 

and presenting computational relations, a practical 

code is developed to introduce the proposed 

method to finite element program Opensees, and 

its application in problem solving is shown. The 

case under study in this research is the process of 

shear band formation in a sample of standard 

Toyoura sand, in which the variations of particles 

arrangement, deformations and strength of the 

sample are studied and investigated and compared 

with the theoretical results obtained from the 

Opensees program in assistance with the above-

mentioned code. 

 

2. Formulas and Frameworks of Multi-

laminate Models 

In classic continuum models, stress or strain 

tensor components are defined on a cubic surface. 

In these models, an infinitesimal cube, with 

dimensions dx , dy and dz , defined around a 

point, which is only capable to define those 

components of stress or strain tensor which are 

either laid on or perpendicular to one of these 

surfaces. This brings up some constraints. 

Considering only six orthogonal planes from 

among the infinite planes around a point may 

cause deletion of the events that might occur on 

other planes, and affect the material behavior. 

Nonlinear behaviors of the materials are highly 

influenced by stress and strain path and its history. 

So, by deletion of the impact of other planes, 

prediction of results by the model, especially 

regarding the anisotropic materials, may not be 

precise enough. Ignoring the effect of different 

directions around a point in anisotropic materials 

certainly has so many negative impacts on the 

model result accuracy. 

In order to consider and aggregate the infinite 

effects of planes around a point, instead of 

studying a cubic surface, a spherical surface 

should be studied. Any point on a spherical 

surface represents the tangential plane on that 

point of the sphere, and displays the effects of that 

specific plane. In order to measure the stress 

components at a point, the stress should be 

integrated on the surface of the circumferential 

sphere. Numerical methods may be used for 

calculating this integral. To simplify the issue, the 

integrand function on specific points of the sphere 

is measured, multiplied by the relevant weight 

factors, and eventually their sum will be 

calculated as the numerical integral over the 

spherical surface. In fact, using this method, the 

spherical surface is estimated by a geometrical 

polyhedron. It is obvious that by increasing the 

number of sides of the polyhedron, accuracy of 

results will be increased. A comprehensive 

mathematical discussion regarding the number of 

planes used in this estimation, the method of 

computing weight factors and the expected value 
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of error is suggested in Ref. [18]. 

Ideally, in granular materials like sand, their 

response to the applied loads could be calculated 

using micro-mechanical behavior. In fact, 

material behavior is mostly influenced by the 

movement of constituent grains, including sliding 

and rolling. For this, environmental stress 

distribution, characteristics of fabric, kinematic 

characteristics of the grains (sliding, rolling or 

both), and kinematic constitutive laws of the 

grains should be clear. In this regard in each step 

of loading, by doing calculations, the new 

condition of all factors, parameters and fabric of 

the grains to be obtained, and the basis for further 

computations to be brought about. Representing 

the macro-level stress tensor of each point in 

terms of micro-level stresses, the number and 

value of contact forces and the contact conditions 

of micro-level points have long been the goal of 

many researchers [19, 20]. 

Multi-laminate models are, to a great extent, the 

answer to the above need. These models, defining 

the interconnected particles as the material 

particles and grains, are considerably capable to 

pave the way for the simulation of micro-level 

forces among the grains. According to the 

assumptions of this method, considering slide or 

separation among the grains will be possible. The 

forces applied to different sides of the polyhedron 

are expressive of the same forces applied to the 

interconnected elements of material. 

 

 
Fig. 1. Location of Different planes in the given 34-

plane Polyhedron 

Fig. 1 shows the arrangement of planes and 

different sides of a polyhedron that 

approximates the spherical surface around a 

point. This polyhedron includes 2x17 sampling 

planes. The directions of normal vectors of all 

planes are shown in Table 1 [21, 22]. In some 

of the multi-laminate models, a polyhedron 

with 2x13 planes, was used, in which there were 

incompatibility between stress and strain 

tensors, and are explained in detail, in Refs. [22, 

23]. Therefore, in this study, 34 planes are used, 

which increase the precision of computations, 

as well as solving the problem of inconsistency 

between stress and strain of local and global 

coordination systems. Considering the 

symmetry of the polyhedral geometry, 

directions of normal vectors of only half of its 

planes and related weight factors are presented 

in Table 1. Orientation of other planes, 

considering their symmetry, is computable. 
 

Table 1. Direction Cosines and Weight Factors of 

Different Planes in the 34-plane Polyhedron [21, 22] 

Plane 

No. 

Direction 

Cosine 

with 

 respect 

to x axis 

Direction 

Cosine 

with 

 respect 

to y axis 

Direction 

Cosine 

with 

 respect 

to z axis 

Weight 

Factor 

1 1/ 3  1/ 3  1/ 3  0.020277985 

2 1/ 3  1/ 3  1/ 3  0.020277985 

3 1/ 3  1/ 3  1/ 3  0.020277985 

4 1/ 3  1/ 3  1/ 3  0.020277985 

5 1/ 2  1/ 2  0 0.058130468 

6 1/ 2  1/ 2  0 0.058130468 

7 0 1/ 2  1/ 2  0.030091134 

8 0 1/ 2  1/ 2  0.030091134 

9 1/ 2  0 1/ 2  0.030091134 

10 1/ 2  0 1/ 2  0.030091134 

11 1 0 0 0.038296881 

12 0 1 0 0.038296881 

13 0 0 1 0.02930060 

14 1/ 6  1/ 6  2 / 3  0.019070616 

15 1/ 6  1/ 6  2 / 3  0.019070616 

16 1/ 6  1/ 6  2 / 3  0.019070616 

17 1/ 6  1/ 6  2 / 3  0.019070616 

 
To evaluate a function value at each point, 

given the function values on different planes of 

the polyhedron, the following well known 

relation can be used: 

(1) 

17

1

( , , ) 4 ( , , )i i i i
i

f x y z w f x y z


 
  

where   presents the unity sphere surface, 
( , , )f x y z  shows the arbitrary function on the 



Non-Coaxial Multi-laminate model … Journal of Petroleum Geomechanics; Vol. 6; Issue. 3; autumn 2023 
 

25 

 

unity sphere surface, and iw
 is the weight factor 

of the i th plane.  

As mentioned previously, in classic continuum 

models, constitutive relations are written between 

macroscopic stress and strain invariants, and 

values of stress and strain tensor components are 

directly related to each other. In multi-laminate 

models, constitutive relations between stress and 

strain already exist, but these relations are written 

in micro-level scale and between the stress and 

strain of planes. In each step of loading, the strains 

of the planes are the projection of macro-level 

strain tensor. Considering this kinematic 

constraint, the consistency of strains between 

micro and macro level are guaranteed. In addition, 

static equilibrium of the model is enforced by 

applying the principle of virtual work during 

loading process even after the maximum stress 

point and at the strain softening area [24]. 

An optional plane, and projected vectors of 

macro-level strain, is shown in Fig. 2. In this Fig., 

“N” is normal vector of the sample plane, and “M” 

and “L”, which can be desirably selected, are the 

tangential vectors of planes. 

This orthogonal system of vectors forms a local 

coordinate system. In this study, to facilitate the 

computations and without any reduction in the 

generality of the matter, all the “M” vectors in 

different planes are considered to be 

perpendicular to the global direction “Z”. 

 
Fig. 2. An arbitrary Sample plane and its related 

Normal and Shear vectors of Strain 
 

Due to the kinematic constraint, which is 

assumed for developing the model, normal and 

shear strain in different planes can be calculated 

using tensor transformation equations:  

(2) , ,N i ij j M i ij j L i ij jn n m n l n          

In this equation,
ij is strain tensor 

component, 
il , 

im  and 
in  are the direction 

cosines of L , M and N  vectors, respectively. 

Also, according to Fig. 2, the projected vectors of 

strain tensor on an arbitrary plane in normal and 

shear directions are shown with
N , 

M and 
L . 

Repetition of subscripts in Eq. 2 represents the 

sum of mathematical terms for 1,2,3i  . 

In the orthogonal local coordination system, 

relation n m l   exists among the vectors. 

, ,ij ij ijN M L  tensors could be defined as follows: 

(3) 

𝑁𝑖𝑗 = 𝑛𝑖𝑛𝑗 

𝑀𝑖𝑗 =
𝑚𝑖𝑛𝑗 + 𝑚𝑗𝑛𝑖

2
 

𝐿𝑖𝑗 = (𝑙𝑖𝑛𝑗 + 𝑙𝑗𝑛𝑖)/2  

According to this equation, strain vectors in 

different planes may be written as follows: 

(4) , ,N ij ij M ij ij L ij ijN M L          

 Virtual work equation between macro-level 

(inside the unity sphere) and micro-level (on the 

spherical surface) scales may be written and 

following equation will be obtained [24]: 

(5) 
3

2
ij N ij M ij L ijN M L d   

 
     

  

In Eq. 5, 
N is the normal stress vector and 

,M L  are the shear stress vectors of the desirable 

plane. Using Eq. 5, in each load increment, the 

components of macro-level stress tensor 
ij can be 

calculated based on the stress vectors of planes. 

It can be proved that, in elastic state, the relation 

between stress and strain on the planes may be 

written as follows [24, 25]:  

(6) . , . , .N N N M T M L T LE E E          

where ,N TE E are normal and shear elastic moduli 

of the planes, and their relation with elastic 

modulus, E , and Poisson ratio   is shown in 

Refs. [24, 25]:  

(7) / (1 2 ) , (1 4 ) / ((1 )(1 2 ))N TE E E E           

To compute the components of macro-level 

stress tensor, due to Eq. (5), the relevant integral 

should be computed on the spherical surface . 

This integral may be computed in one of the 

approximate numerical methods, such as 

Gaussian Method. In this method, as mentioned 

previously, the weighted summation of a desirable 

function 
1 2 3( , , )f n n n  on the planes is calculated. 

Same as numerical integration on a plane surface, 

in spherical integration also the value of function 

in each plane is computed and after multiplying it 
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by the relevant weight factor, summation of 

planes is found. The numerical integral of Eq. (5), 

which was resulted from the principal of virtual 

work, is as follows [24]: 

(8) 
𝜎𝑖𝑗 =

3

2𝜋
∫ 𝑆𝑖𝑗

𝛺

𝑑𝛺 ≈
3

2𝜋
× 4𝜋 × ∑ 𝑤𝑝(𝑆𝑖𝑗)(𝑝)

𝑁𝑝=17

𝑝=1

 

𝑆𝑖𝑗 = 𝜎𝑁𝑁𝑖𝑗 + 𝜎𝑀𝑀𝑖𝑗 + 𝜎𝐿𝐿𝑖𝑗  

In this equation, p is the plane number and 
pN

is the total number of planes. 

 

3. Review on Damage Theory and the 

Applied Relations 
When strain components on the planes, i.e., 

, ,N M L    are calculated, for the very early steps 

of loading, the values of the continuum stress may 

be computed using Eq. (8). But gradually by the 

increase of the applied loads, development of 

micro cracks, and their interconnection, this 

relation loses its linear form, and hence the 

reduction of rigidity of material should be taken 

into account in calculating the stress. Some 

explanations on the reasons and factors of rigidity 

deterioration of different geo-materials have been 

provided formerly, and it has been repeatedly 

dealt with in literature and different articles [26, 

27, 28]. To consider the degradation in the rigidity 

and strength of material and their nonlinear 

properties in the developed model, damage 

functions are used. The role of these functions is 

to control the decrease in normal and shear 

stiffness in different planes. These functions, in 

each step of loading, by increasing the strains, 

calculate the extent of damage imposed to the 

material, and modifies the stiffness values by 

applying a mathematical factor between 0 (intact 

case) and 1 (fully damaged). Damage functions 

are shown with   and (1 )   will be a factor which 

in each step modifies the value of the initial 

stiffness, and computes the value of the applicable 

stiffness factor. 

Many different functions could be considered 

for  , but depending on the conditions and 

characteristics of each type of material, they may 

be different in each model. In the current model, 

to reduce the number of parameters and for 

maintaining the necessary accuracy, exponential 

functions are used in general form 

1 ( ( / ) )bExp a    .  Decrease in the number 

of parameters lets one to find them more easily in 

calibration stage, and at the same time, simpler 

relations and eventually a sharper model to be 

obtained. For each given strain component in the 

model, (tensile, compressive or shear), two 

parameters will be needed, and added to the 

model. 

Selecting different values for a and b , stress-

strain relation curves could desirably been 

achieved. The main role of parameter b is to 

adjust the value of drop slope and the sharpness of 

the maximum point of stress-strain curve. 

Parameter a also determines the position of peak 

point of stress-strain curve. 

In general, three types of the strains may be 

applied to a plane: tensile, compressive and shear. 

In geo-materials, three damage functions may be 

considered to calculate damages applied to the 

material appropriately. 

Considering that the current study is dedicated 

to the behavior of anisotropic sands, tensile 

strength of material is ignored for simplicity and 

only compressive and shear strength are taken into 

account in computations. According to the 

presented explanations, two series of parameters 

a and b are considered for sands, in model: 

,Nc Nca b
 for the normal compressive damage 

function and 
,T Ta b

for the shear damage function 

of the planes. Hence the stresses on different 

planes are extracted from the following relations:  

 

(9) 0

0 ; 0

(1 ). . ; 0

N N

N Nc N N NE

 

   

 

     
 

(10) 0

0 ; 0

.(1 ). . ; 0

T N

T T T T T NRF E

 

   

 

     
0N   is the equivalent for tensile strains and 

0N   is the equivalent for compressive strains. In 

Eqs. (9) and (10), the values of compressive 

damage function and shear damage function are 

computed, respectively, as follows: 

 (11) 1 ( ( / ) )Ncb

Nc NcExp a   
  

 (12) 1 ( ( / ) )Tb

T TExp a   
  

It is assumed that if unloading and reloading 

occurs in the normal component of planes, 

damage factor would not change [29], and remain 

constant until normal strain reaches its maximum 

value in the strain history. The function diagram 

of damage factors, in this condition, act as an 

envelope for damage factors, and the maximum 

value of the strain is the return point of the damage 

factor to the envelope Fig. 3.  
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Fig. 3. Variations of the Damage Factor Values in 

Loading and Unloading [29]: (a) Damage Function of 

the normal Strains (b) Damage Function of the normal 

Strains 

 
Using different planes in different directions 

enhance multi-laminate models with special 

properties. In this type of models, some of the 

planes enter into unloading stage, while other 

planes are still loading. This property can be seen 

in no other model, and compared to the classic 

continuum models, this is considered to be a 

privilege. The reason for this property is that stress 

and strain vectors on different planes are not 

tensor, thus do not need to fulfill any tonsorial 

invariance condition. Unloading in the model 

occurs when the value of the work performed, 

.  , is negative. This criterion of unloading is 

considered independently for each stress 

component on different planes. 

 

4. Inherent Anisotropy of Material 
Anisotropy of material is categorized into two 

general types. Type 1 is the anisotropy which 

exists in the material from the very beginning, and 

is called inherent anisotropy. This type of 

anisotropy is resulted from the texture and 

microscopic constitution of materials and fabric of 

the grains. Distribution of contact points in 

different spatial directions around a particle which 

is influenced by the orientation of sedimentation 

or tectonic pressure is the main reason for this type 

of anisotropy. 

The mechanical properties of anisotropic 

materials vary in different directions. This 

variation in material behavior in different 

directions stems from the fabric of grains around 

a point, which is changing continuously while 

loading. Defining a uniform law for the whole 

planes facilitates the process of building and 

developing a model. If a rule is set, which can be 

used in all the planes, dispersion of relations and 

formulas will be reduced, and thus finding and 

calibrating the parameters, used in the model, will 

be much easier. In this model, due to the 

requirements and applications, compressive 

strength and shear strength are defined through the 

definition of ellipsoids. An ellipse is defined by a 

few numbers of parameters, but provides the 

model with the ability and competence to present 

a comprehensive and general law for determining 

the strength of each plane in each direction, which 

needs the least mathematical computations. There 

is a detailed discussion on the reasons and factors 

of variations in compressive strength and shear 

strength of the anisotropic material in different 

directions, as well as the appropriate geometric 

form for regularizing strength variations on 

different planes are presented in Refs. [23, 30]. 

For taking these variations in strength 

magnitude of different planes into account, two 

separate ellipsoids, for computing normal and 

shear stresses of the planes, should be considered. 

In this regard, one ellipsoid for normal 

compressive rigidity factor of the planes and 

another ellipsoid for shear rigidity factor of the 

planes are considered to introduce inherent 

anisotropy. According to this method, the stresses 

on each plane are calculated similar to isotropic 

mode, but rigidity factors, which modify the 

mobilized strength of each plane, are multiplied 

by the computed stresses, and modified stresses in 

anisotropic case are calculated according to the 

following relation:  

 (13) 
0 ( ).(1 ). . p

Nc Nc Nc N NcRF E      

In this relation, 
NcRF  defines the rigidity factor 

of the normal compressive strength. 

An ellipsoid of normal rigidity factor is shown 

in Fig. 4(a). By extending the normal vector of the 

given plane, the vector cuts off the ellipsoid 

surface at point "M". The size of radius "OM" 

determines the value of normal rigidity factor for 

this specific plane. It is obvious that for an 

isotropic material, the three main radii of this 

ellipsoid are the same and equal to unity. 
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(a) (b) 

Fig. 4. Ellipsoid of rigidity factors (a) Normal 

rigidity (b) Shear rigidity 

 

Ellipsoid Equation for normal compressive 

rigidity factor is presented as follows:  

(14) 
𝑙2

𝐴𝑁𝑐
2 +

𝑚2

𝐵𝑁𝑐
2 +

𝑛2

𝐶𝑁𝑐
2 = 1 

In Eq. 14, parameters , ,Nc Nc NcA B C  are the sizes 

of the main radii of these ellipsoids and are among 

the material constants, so should be found through 

calibration. The larger size of radius of the 

ellipsoid indicates larger strength of material on a 

specific direction. 

Ellipsoid of material rigidity factors, for 

computing shear stresses, is shown in Fig. 4(b). 

This ellipsoid is cut by a given inclined plane 

which makes angles with all the three axes of the 

coordination system. If the value of shear strain on 

this plane equals 
T , the value of the resultant 

shear stress on this plane will be 
T , which is the 

product of shear strain and shear elastic modulus, 

TE , and for this, vectors of stress and strain on 

the plane will be coaxial. The value of TE  

depends on the direction of plane and the direction 

of shear strain itself. The more the plane conforms 

to the bedding plane, the less shear elastic 

modulus expected. In shear strains parallel to the 

direction of bedding plane, since it is easier for the 

grains to slide on each other, less energy is needed 

and less shear strength is created. The principal 

diameters of the ellipsoid are the rigidity factors 

of material in three directions, where eventually 

through multiplying them by TE , shear elastic 

modulus in principal directions is obtained. In Fig. 

4(b), “O” is the center of the ellipsoid and 
TM is 

the point where strain vector of plane touches the 

surface of ellipsoid. By definition, the length of 

TOM equals the value of rigidity factor in that 

direction. The value of shear stress on the planes, 

depending on normal strain mode, is also 

computed as follows:  

(15) 𝜎𝑇 = 𝑅𝐹𝑇. (1 − 𝜔𝑇
0 ). 𝐸𝑇

0. 𝜀𝑇  𝑖𝑓  𝜀𝑁 ≤0  

 (16) 𝜎𝑇 = 0   𝑖𝑓   𝜀𝑁 > 0  

It is obvious that for isotropic material, the 

principal diameters of the ellipsoid are all equal to 

one, and a sphere takes the place of the ellipsoid. 

The equation for ellipsoid is generally as follows:  

 (17) 
2 2 2

2 2 2
1

T T T

l m n

A B C
  

  

In this relation, , ,T T TA B C  are the main radii of 

this ellipsoid, and are among the material 

constants, which should be found through 

calibration and comparison of the experimental 

and computational results. 

Due to several experimental and laboratory 

observations, unloading and reloading of shear 

component cause some of the grains and particles 

of the sand, which were dispositioned and 

displaced during the initial loading, return back to 

their initial position, and the initial fabric of the 

grains to be regenerated and repaired to some 

extent. Recovery of sand texture during unloading 

and reverse loading results in an increase in 

density of texture and shear stiffness. This 

phenomenon is explained in different laboratory 

Refs. [31, 32], and makes the shear loading and 

unloading behavior of grain materials more 

complicated. In this study, considering the need, 

unloading and loading behavior of sand should be 

precisely computed in each step of loading, so that 

the maximum conformity with the experimental 

results to be obtained. To facilitate the 

computations, the issue is regularized by setting a 

series of simple rules to be introduced to the 

model, so that no new parameter to be added to 

the model, and thus calibrating results and finding 

parameters to be easier. The details of this method 

are explained in Ref. [23], so repetition is avoided. 

 

5. Induced Anisotropy of Materials and 

Fabric Variations 
The second type of anisotropy, is induced 

anisotropy. This type of anisotropy in materials 

occurs upon loading, and depends on the history 

and direction of loading. By loading progress and 

strains growth, the fabric and layout of grains will 

be changed. According to the experimental 

observations, variations of texture and material 

constitution always occur the way the direction 

perpendicular to the grains contact surface settles 

on the main direction of the maximum applied 

M 
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compressive stress. In other words, the fabric of 

grains changes the way they can bear more load. 

For this, the neighboring grains move and displace 

the way they make column type strands along the 

principal compressive stress. Over time, the 

number of consistent grains in each strand and 

also the number of strands increase, and thus 

failure occurs. The above explanations are based 

on the experimental observations which are 

mentioned in different Refs. [33, 34]. At the 

moment of failure, the column type strands (load 

transfer paths) involve in buckling and failure one 

by one, and the material strength suddenly 

decreases in this direction. 

Normal and shear stresses both change the fabric 

of grains, as well as the material particles. These 

variations in the fabric of grains and thus 

variations in the strength and rigidity of materials 

in different directions can be interpreted as 

variations of the ellipsoids of normal and shear 

strength. Variations of damage factors in different 

planes cause changes in size and dimensions of 

the ellipsoids in different directions. In fact, it can 

be said that these variations in the strength and 

rigidity of material in different directions are the 

result of variations of grains fabric. Planes with 

more loading and greater damage factors will 

decrease the dimensions of ellipsoid to a greater 

extent. Variations of the ellipsoids radii sizes in 

different directions result in the rotation of 

ellipsoids, and even change their geometrical 

shape to unusual ones. For example, in a uniaxial 

compressive loading which specimen subjects to 

lateral expansion, the maximum compressive 

strain is experienced on the planes perpendicular 

to the loading direction. The schematic diagrams 

of variations in the ellipsoid of the normal 

compressive rigidity factors are step by step 

presented in Fig. 5 (steps 1 to 5) in purple color 

(butterfly shape). The initial ellipsoid section is 

also shown by dashed line at the same part of the 

figure. Growth of normal strains distribution 

around a point (petal shape) in all steps is also, 

simultaneously, shown in blue in the figures. 

Vertical petals relate to the distribution of 

compressive strains and horizontal petals relate to 

the tensile strains. It is obvious from these figures 

that the increase in normal compressive strain is 

accompanied by an increase in horizontal tensile 

strain. In these steps of loading, the principal axes 

of the applied strain do not undergo any rotation, 

and remain fixed. As can be seen in these figures, 

the planes parallel to the loading direction, which 

have no compressive strain, are safe from the 

viewpoint of compressive damage, and no 

decrease in the diameter of ellipsoid can be seen 

on these planes. In other words, reviewing these 

ellipsoids, it can be said that those directions 

which have undergone greater decrease of 

dimension, are in fact more damaged. As loading 

proceeds, more planes undergo compressive 

damage and rigidity reduction. It is worth saying 

that distribution of strain and rigidity in this figure 

is in fact three dimensional, but to facilitate the 

display, in this figure, variations of strains and 

thus variations of ellipsoids are both shown in two 

dimensions. On the right side of the conceptual 

Fig. 5(steps 6 to 10), tensor axes start rotating by 

keeping the eigenvalues of the strain tensors 

constant. By the rotation of strain tensor axes, 

some of the planes are loaded and the values of 

their strain increase, but in contrast, some other 

planes are unloaded, which means the values of 

their strain decrease. As explained formerly, 

during the compressive unloading and by a 

decrease in the values of normal compressive 

strain, the factors of normal compressive damage 

do not decrease and remain constant. So those 

directions of the ellipsoid which are unloaded 

remain constant in size and do not change, but 

those directions which are being loaded become 

smaller in radius. In steps 6 to 10 of Fig. 5, it is 

observed that the diameter of the ellipsoids 

decreases gradually, which is indicative of the 

reduction in the compressive strength on that 

specific direction. 

The way of considering the effect of shear 

strains of planes on the fabric of grains and 

particles is a little different. According to the 

relations of solid mechanics, it is clear that on 

each plane there is a direction on which the shear 

strain is higher than other directions. This 

direction is named the maximum shear strain 

direction of the plane. Also the direction 

perpendicular to the maximum shear strain of the 

plane lacks shear strain, and actually its shear 

strain is equal to zero. In each plane, it is expected 

that the maximum reduction in strength and shear
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Fig. 5. Conceptual variations of strain distribution (blue petal) and the ellipsoid of normal Compressive rigidity 

factors (purple butterfly) – (steps 1-5: uniaxial Compressive loading, steps 6-10: rotation of principle axes) 

 

rigidity of material to be along the maximum 

shear strain. Other directions on the plane are 

exposed to less shear stain and shear damage. So 

the direction perpendicular to the maximum shear 
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strain on each plane, the shear strain of which 

equals zero, will lack any shear damage and 

strength reduction [23,30]. 

The way of considering the effect of shear 

strains of planes on the fabric of grains and 

particles is a little different. According to the 

relations of solid mechanics, it is clear that on 

each plane there is a direction on which the shear 

strain is higher than other directions. This 

direction is named the maximum shear strain 

direction of the plane. Also, the direction 

perpendicular to the maximum shear strain of the 

plane lacks shear strain, and actually its shear 

strain is equal to zero. In each plane, it is expected 

that the maximum reduction in strength and shear 

rigidity of material to be along the maximum 

shear strain. Other directions on the plane are 

exposed to less shear stain and shear damage. So 

the direction perpendicular to the maximum shear 

strain on each plane, the shear strain of which 

equals zero, will lack any shear damage and 

strength reduction [23,30]. 

Each of the planes cut off the primary ellipsoid 

of the shear rigidity factor in an ellipse shape. All 

ellipses are produced from a mother ellipsoid. 

Each of the ellipses on the planes determines the 

process of variation of shear rigidity factors in 

different directions of that plane. When loading 

begins, shear strains of different planes start 

increasing. 

 
Fig. 6. Degradation and Rotation of principle axes of 

a sample shear rigidity factor on planes due to loading 

progress 

Fig. 6 shows the conceptual process of rigidity 

factor degradation and also the rotation of the 

principle axes of a sample shear rigidity factor 

ellipse of a plane due to loading increase. As seen 

from the figure, the main axes of this ellipse are 

rotating on the plane while the strains are 

increasing and the stiffness is degrading. These 

variations in stiffness and rotation of axes are the 

result of fabric change. Knowing the 

mathematical equations of the ellipses in each 

step, shear rigidity factor of the plane in each 

direction will be computable through the equation 

of this ellipse, so the rotation of strain vector of  

each plane will impose no limitation to the 

model. 

 

6. Shear Stress and Strain Field on the 

planes 
Using the relations of solid mechanics, the 

maximum shear strain on each plane is 

computable. As mentioned formerly, it is 

expected that the direction of the maximum shear 

strain meets the maximum strength and rigidity 

reduction, and the direction perpendicular to it, 

which has zero shear strain, not to have strength 

reduction. The reason why the ellipses of shear 

strength distribution of the planes in each step of 

loading are important is explained in section 5. 

But it should be noticed that non-coaxiality 

between stresses and strains plays a significant 

role in anisotropic materials, and should be 

considered in the shear stress computations of 

each plane. In the case of calculating shear stress, 

using Eqs. (15) and (16), the obtained shear stress 

will all be coaxial with the shear strain of that 

plane. But considering the anisotropy in the 

context of material and different rigidity factors in 

different directions and different planes, and also 

considering the effect of different paths of strain, 

the principal axes of stress tensor, computed by 

Eq. (8), will not necessarily conform to the 

principal axes of strain tensor. In an anisotropic 

material, shear component of stress and strain 

might be non-coaxial. Although the shear stress 

computed by Eq. (15) is parallel to the shear strain 

of the plane, for being more compatible to reality, 

it should be borne in mind that distribution of 

shear stress on a specific plane is not necessarily 

coaxial with shear strains either. As distribution of 

normal stresses around a point is simultaneously 

influenced by strain distribution and stiffness 

distribution, shear stresses are not exceptions to 

this rule either. In previous models, shear stresses 

of the planes were obtained by the multiplication 

of maximum shear strain, initial shear elastic 

modulus and modified rigidity factor of the plane. 

Hence shear stress vectors of the plane will be co-

axial. As mentioned before, the impact of 

anisotropy and stiffness distribution should be 

applied to the calculation procedure. For this, the 
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concepts “shear stress field” and “shear strain 

field” are introduced in Ref. [23]. According to the 

method presented in this Ref., instead of 

considering only one strain vector on each plane, 

a field of strains operating on the plane, are 

considered simultaneously. This way, the effect of 

no direction on the plane will be missed. The 

components of this field are also the projection of 

continuum strain tensor on a plane and in different 

directions, which are obtained utilizing solid 

mechanics formulas. In this field, the sizes of 

strain vectors in different directions vary from 

zero to the maximum strain of the plane. In each 

direction, the value of shear stress vector is 

computed by using Eq. (15 or 16) and in an 

ordinary way. Same as previous instructions, the 

ellipse of shear rigidity factors on the planes, in 

each step of loading, should be updated. In other 

words, the amount of 0 0.(1 ).T Shear TRF E  in each 

step should be updated, considering the variations 

in distribution of rigidity factors. Using solid 

mechanics formulas and relations, it can be 

proved that the distribution of strain vectors 

around a point on a plane, makes a shape like the 

red circle in Fig. 7. Multiplying strain vectors and 

scalar values of the modified rigidity factors of 

each specific direction, the stress vector of that 

specific direction is obtained. Fig. 7 demonstrates 

the summary of these operations in a conceptual 

way. 

 

 
Fig. 7. Computation method of shear stress field due 

to shear strain field and shear rigidity factors on 

different planes 

Continuous variations in the ellipse of rigidity 

factors distribution and stress and strain vector 

fields are conceptually shown in Fig. 8. As can be 

seen from this figure, by increasing and rotating 

the direction of strain vectors field (red circle), the 

ellipse of shear rigidity factors (green ellipse) gets 

smaller and rotate over time. Shrinkage of the 

dimensions of the ellipse means deterioration of 

strength and degradation of stiffness, and its 

diversion also means variation in the fabric of 

grains of material. The product of multiplying 

strain vectors field by the values of the modified 

rigidity factors creates stress vectors field (blue 

figure). But in order to compute integration of Eq. 

(8) and obtain the macroscopic stress of the point, 

there should be only one stress vector on each 

plane so that it can participate in calculations. This 

stress stands for the whole stress vectors of the 

field on plane, the components of which are 

computed using the following relations:  

 (18) 
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In Eqs. (18) to (20), S 
 is the magnitude of 

stress vector in direction  . Also 1

rS , 2

rS  and 
r  

are components of representative shear stress 

vector of the plane and the angle of this 

representative vector, respectively. Directions 
r  

and   are computed with respect to the direction 

of zero strain vector on each plane. 

Damage parameters and anisotropy parameters 

of the suggested model, which have been found 

through the calibration method, for Toyoura sand 

with 82 percent density, is presented in Ref [23], 

and the results are shown in table 2. 
 

Table 2. Model parameters for Toyoura sand with 

relative density of 82% [23] 

Damage Parameters Anisotropy Parameters 

compressivea  
compressiveb  

sheara  
shearb  

NcA  
NcC  

TA  
TC  

0.0045 1.0 0.001 1.5 1.0 1.31 1.0 1.38 

 

Other parameters such as elastic modulus and 

Poisson ratio are computed directly considering 

the loading test result, and are respectively 

equal to 110 MPa and 0.28.  
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Fig. 8. Successive variation and rotation of shear 

stress field due to variation of shear strain field and 

rigidity factor ellipse 

7. Adding New Model to the OpenSees 

program 
In order to take advantage from the suggested 

model in solving more complicated engineering 

problems, a code is written to introduce the model 

to the Opensees FEM (finite element method) 

program. This code is being called and used by the 

main program, for the application of finite 

element method successively [36]. Opensees 

program includes several codes and subroutines 

which are named "classes". These classes are 

written and developed over time by the Opensees 

programming group or other users. The new 

developed model in this study is called "Ncmm" 

and is a subset of "nDMaterial" class. 

 

8. Introducing the Properties of the 

Sample under Study 
In order to examine the developed model, the 

experimental results of a real sample should be 

compared to the theoretical results obtained from 

Opensees program. For this purpose, a sample of 

anisotropic geo-material, like sand or stone, 

should be considered, so that its characteristics to 

be experimentally compared with theoretical 

results.  Items such as strength of material, 

variation in the fabric of the grains and rotation of 

the principal axes of stress and strain tensor 

should have been seen in the given experimental 

study. After searching and reviewing different 

experimental studies, eventually a laboratory 

sample was selected. A sample made from 

standard Toyoura sand, which had been loaded to 

the extent of creation of shear band. In this 

laboratory research, issues such as shear-driven 

volume expansion, fabric variation of the grains 

and rotation of the strain tensor principle axes 

have been investigated. In the sample under study, 

the test was taken as drained (dry) under the plane 

strain condition. Dimensions of the sample had 

180 mm height, 160 mm length and 80 mm width. 

The specifications of the test apparatus and 

method of providing the sample under study are 

explained in detail in Ref. [36]. The sample 

density is 90%. The principal normal stress 
1  is 

applied by the pressure of a thick horizontal plate. 

Circumferential stress 
3  is also adjusted through 

internal negative pressure from inside the sample 

itself, equal to 249.0 /kN m . Displacement and 

deformation of the sample in direction 2 are 

prevented, and it has no strain in this direction, 
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i.e., 
2 0  . The geometrical details of the sample 

are illustrated in Fig.9. 

 

Fig. 9. Compressive test sample of standard Toyoura 

sand (a) Reference axes (b) V section (b) S section [36] 

Thin sections V and S which are seen in Fig. 

9(b) and 9(c), are small laminates. They are 

extracted and separated from the deformed sample 

at the end of the test to study microscopic 

variation of fabric of grains. Section V is 

perpendicular to axis 2, and section S is parallel to 

the shear band. 

For simulating the mentioned sample test in 

OpenSees program, using finite element method, 

first of all, the parameters of material should be 

introduced to the program. The material used in 

this test, are the same standard Toyoura sand.  

However, it should be noted that the relative 

density of material used in this test is different 

from that of the Ref. [23] test. So the parameters 

should be cautiously used, and the value of 

parameters considered for the model should be the 

result of model calibration for the material with 

similar density. In the test program which was 

conducted by Miura et al in Ref. [2] to investigate 

non-coaxaility of Toyoura sand, density of the 

sand used at the beginning of the test equals 82%, 

and then consolidates under confinement pressure 

98 kPa. But in the shear band test, being studied 

in this paper, situation is different. In this test, the 

relative density of Toyoura sand had initially been 

90%, and then consolidates under 49 kPa 

confinement pressure. So these two tests are 

different from the viewpoint of density and 

consolidation pressure. After implementing the 

computations for both types of sand, it could be 

shown that the sand with relative density of 82% 

reaches the relative density of about 90%, upon 

the isotropic consolidation, under the confinement 

pressure of 98 KPa. On the other hand, the sand 

with relative density of 90%, reaches the relative 

density of about 92.5%, upon the isotropic 

consolidation under the confinement pressure of 

49 kPa. It should be noted that the volumetric 

elastic modulus is not constant during 

consolidation, and is variable instead. 

Considering the above explanations, it is clear that 

the values of material relative density are close to 

each other, upon multilateral consolidation, and 

fortunately a difference of 2.5% is not significant. 

Therefore, considering that other conditions and 

characteristics of sand are uniform, use of the 

parameters of the first test is permitted in the 

simulation of second test. 

 

9. Sample Meshing 
In finite element analysis, the result of analyses is 

usually different comparing to the element 

dimensions, even using elements with the same 

type. This means that the theoretical results of the 

same sample analysis, with various dimensions of 

element, are different. Therefore, in each finite 

element analysis for different problems, first the 

sensitivity of the simulated sample to the 

dimensions of elements should be focused on. For 

this, in this study also, analyses by different 

dimensions of same type elements have been 

performed, and the results have been compared 

with the macro-level experimental results 

presented in Ref. [36]. In this study, at the first 

step of sensitivity analysis, in five separate 
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analyses, the sample with 8-node hexahedral 

cubic elements, SSPbrick, were meshed 

uniformly with dimensions of 2, 2.5, 5, 10 and 20 

mm. Diagrams of macro-level stress-strain, which 

are derived from these analyses for the mentioned 

meshing sizes, are shown in Fig. 10(a). As can be 

seen from this Fig., the values of the predicted 

strengths were higher for bigger meshing, and the 

maximum strength occurs in smaller strains. The 

reason for this is attributable to the greater effect 

of applied boundary conditions and the increase in 

the value of the effect of   confinement pressure. 

According to the conditions of testing apparatus, 

the bottom supporting conditions below the 

sample are defined the way that all transitional 

degree of freedoms of the nodes are restrained in 

this level. Supporting conditions above the sample 

are also defined the way that the degrees of 

freedom of all points are bound together in lateral 

direction (3). In fact, the adjacent points in the 

upper jaw of the test apparatus are not able to 

move independently in lateral direction, and all of 

them move together and to the same extent, to the 

lateral direction. Considering the above 

explanations, it is clear that the support conditions 

have an important impact, and if the used elements 

are not of suitable dimensions, their effects on 

problem solving conditions will be more than 

necessary, and confinement pressure in the 

elements will be estimated more than what they 

really are. This factor eventually leads to unreal 

prediction and excessive strength. 

For more precise study on this subject, 

volumetric strain variations versus axial strain are 

compared for analyses with different meshing 

against the experimental values in Fig. 10(b). It is 

clear that dilatant volumetric strain is smaller for 

bigger dimensions of meshing. Since the test is 

taken under plane strain conditions, the value of 

2 0   and thus the value of volumetric strain will 

be equal to 
1 3V    , where the value of 

1  

will always be negative and the value of 3  will 

always be positive. Considering the diagrams in 

Fig. 10(b), it is clear that the values of 
V  are 

smaller for the analytical samples with bigger 

meshing elements. This is indicative of the fact 

that the impact of support conditions was such that 

less lateral strain values have been occurred in 

samples with bigger meshing dimensions. 

According to Diagrams 10 (a) and (b), it is clear 

that the results predicted by the 5 mm element is 

sufficiently close to the experimental results, and 

the maximum value of analytical strength is only 

5.6% higher than the precise experimental value, 

which is a satisfying precision. In addition its 

computational cost is much lower than those of 2 

and 2.5 mm. 

 

10. Deformation of Samples with 

Different Meshing 
In this section, deformation of different parts of 

the analyzed samples is studied using finite 

elements program Opensees with assistance of the 

model introduced in previous sections. The cubic 

sample introduced in this section is studied using 

meshing dimensions 5, 10 and 20 mm. The 

obtained analytical results for different values of 

deformation in different parts are studied. 

Figs. 11(a) to 11(c) show the contour of vertical 

and lateral deformation for meshing with different 

dimensions. All the figures are related to the axial 

strain of 3.6 percent of the sample. This strain is 

related to the post peak loading area where 

variations of stress versus strain have reached a 

stable and fairly constant condition. 

 

Fig. 10. Comparison of experimental and analytical 

results with different meshing of analytical sample (a) 

Deviatoric Stress vs. Axial strain (b) Volumetric Strain 

vs. Axial strain 
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Fig. 11. Deformation contour of the analytical sample 

with uniform cubic elements with different dimensions 

(a) 5mm meshing (b) 10mm meshing (c) 20mm 

meshing 

The process of destruction and formation of 

shear band is clearly seen in these Figures. Also 

considering these Figures, it is clear that the 

residual deformation, derived from the former 

steps of loading, has still remained to some extent, 

and is visible. For example, before the formation 

of shear band and sliding of the upper part over 

the lower part, lateral deformations on the mid 

parts are more than those at the sample ends which 

are affected by jaw friction. But by the outset of 

shear band formation, reduction of the values of 

macro-level vertical stress and redistribution of 

strains, some of these deformations reduce and 

some others remain in the sample, as is visible in 

the presented contours.  

It should be noted that to impose the formation 

of a one-way shear band, 3 percent of the applied 

axial displacement is horizontally applied to the 

nodes adjacent to the upper support in the input 

file, in each step. Otherwise, the shear band forms 

in X symmetrical way, and the obtained strength 

values will be different. 

Considering the numbers presented beside the 

contours, it is clear that the values of axial and 

lateral deformations are smaller for the samples 

with larger elements. The reason was previously 

studied, and it was specified that it is due to the 

greater impact of lateral constraint of supports and 

the increase in the confinement pressure of 

elements. For example, focusing on the contour 

values of vertical deformations in the lower half 

of the sample, it is clear that the red area adjacent 

to the lower support, which is correspondent to the 

normal deformations of zero or near zero, 

becomes larger and expands by increasing the size 

of the element dimension.  As the same way, in 

upper levels, the contours that correspond to less 

deformation values, expand more as well. 

It should be noted that after the formation of 

shear band in the sample, the upper half, in 

addition to stress driven deformations, will 

experience rigid body displacement, as well. This 

displacement is the result of sliding and 

movement of the upper half of the shear band on 

the lower half. According to the inclination of the 

formed shear band, rigid body displacement of the 

upper half of the sample exists in both vertical and 

horizontal directions, thus in studying the 

displacement of points, this should be considered. 

This type of rigid body displacement in Fig. 12, 

which is obtained from the experimental results of 

the test, is displayed in form of difference in the 

elevations of the different layers of sample, and 

has a good conformity with the computational 

results of Fig. 11(a). 

With an overview on the Figs. 11(a) to 11(c), it 

turns out that the average estimated widths of the 

shear band, are 4, 8 and 12 mm, respectively. 

These figures are obtained from measuring the 

distance between the adjacent points in the 

direction of the maximum gradient of 

displacement. The location of these points is 

selected to be the same experimentally measured 

locations of Fig. 12. Shear band obtained from the 
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experimental results are also shown in Fig. 12, and 

its width is observable in different areas. 

 

 

Fig. 12. Experimental results of the shear band width 

and vertical displacement of the upper half in Toyoura 

sand test [36] 

11. Variations of Damage Factors in 

Different Sample planes 
For more inspection of the performance of the 

suggested model, the diagrams of damage factors 

variations are investigated in this section. By 

increasing the vertical macro-level strain in the 

sample, normal and shear strains of different 

planes also change. These changes in the strain of 

planes lead to variations in damage factors, the 

diagrams of which are presented in Fig. 13. The 

case under study in this section is of 5mm 

meshing. These diagrams are presented for two 

different elements from two different areas of 

sample. One point is selected above and another 

point at the shear band area. Considering the 

variation of each of the damage functions and 

their growth speed, type of damage and the plane 

on which damage begins could be found. 

In Fig. 13(a), variation of compressive and shear 

damage factors for a zone a little above the shear 

band, is shown. Taking a glance to this figure, it is 

clear that compressive damage is not very 

probable above the sample shear band. The 

maximum probable damage at this point is less 

than 0.8, which is far enough from completely 

damaged limit. This value of maximum damage 

belongs to the plane No. 13 which is horizontal 

and loading direction of the sample plane is 

perpendicular to this plane. Of course, its value 

remains constant upon reaching a maximum 

value. According to the assumption stated in 

section (3), with the reduction of strains, damage 

magnitude remains constant. Following to the 

plane No. 13, there are planes such as 14, 15, 16 

and 17 which are almost close to the horizon, and 

suffer from a considerable compressive damage. 

Although planes such as 10, 1 and 3 did not suffer 

a considerable compressive damage at the 

beginning of loading, they show a significant 

growth in compressive damage factor by the 

outset of shear band formation and principal axes 

rotation. 

Taking a look on Fig. 13(b), it is clear that the 

element under study has greater values of shear 

damage in comparison to compressive damage. 

According to the value of the maximum shear 

damage factor of 0.9 in planes 9 and 10, it can be 

said that occurrence of shear damage in these 

planes is more probable, in comparison to others. 

From the viewpoint of spatial orientation, these 

planes are the closest ones to the plane on which 

shear band occurs. After the mentioned planes, 

there are also planes 1 to 4 and after them, planes 

16 and 17. Of course, by shear band formation and 

principal axes rotation, shear damage factor in 

planes No. 16 and 17 overtake other planes, and 

experience the highest shear damage at the area 

above the shear band. 

At the shear band area also, according to Fig. 

13(c and d), shear damage is absolutely 

undoubted, but at the same time, the sample 

compressive damage in this area is also 

considerable. The value of shear damage factor in 

this area amounts to 0.95, and it can be claimed 

that complete shear damage is occurred. The 

maximum value of shear damage at the early 

stages of loading occurs in planes 9 and 10, and 

for this, it behaves similar to the upper area of the 

shear band. But after shear band formation and 

axes rotation, planes 16 and 17 overtake other 

planes and record the maximum value of shear 

damage in the whole sample. The reason for this 

is that planes 16 and 17 are the closest ones to the 

shear band, so they have experienced the greatest 

increase in the value of shear damage. Regarding 

the compressive component, it can also be seen 

that at the commencement of loading, plane No. 

13 had the highest growth but upon shear band 
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formation, the damage of planes 14 and 15 has 

grown fast, and reached about 0.87. This is 

actually indicative of the fact that the shear band 

zone not only suffers from shear damage but also 

compressive strength capacity reduces 

considerably. Considering the above 

explanations, and comparing them with 

experimental observations, it is clear that damage 

functions can accurately predict the type and 

degree of the damage. According to the plane in 

which damage occurs, failure direction can also be 

found, which was proved to be in good conformity 

with reality. 

 

12. Variations of Compressive and 

Shear Rigidity Factors in Different 

Directions of the Sample 
The value of compressive strength in different 

directions decreases by an increase in loading. To 

clarify the matter, compressive rigidity factors are 

presented in Figs. 14 and 15. These figures show 

the variations of the compressive rigidity factors 

for the lower part of the shear band and the shear 

band itself, respectively. In these figures the 

ellipsoid of initial compressive rigidity factors are 

shown in red dashed diagram and rigidity factors 

distribution in following increments are also 

shown in blue diagram. 

It is obvious that in Fig. 14, which is related to 

the lower part of the shear band, distribution of 

compressive rigidity factors involves in 

declination and reduction, but not much rotation 

occurs on its main axes. Strength reduction is also 

mostly related to the horizontal, or near 

horizontal, planes which are perpendicular to the 

loading direction. 

On the contrary, paying attention to Fig, 15, 

which is related to the shear band area itself, it can 

be seen that in addition to strength reduction due 

to loading, rotation also exists in the main axes of 

strength distribution. In this figure, considering 

the process of changes in the blue diagram, it can 

be seen that right upon the outset of shear band 

formation, the principal axes of diagram 

considerably start rotating as well. 

Comparing the two Figs. 14 and 15, it is clear 

that strength reduction is higher around the shear 

band and rotation of axes of strength distribution 

diagram has considerably occurred in this area and 

is of great importance. This strength diagram 

rotation itself is resulted from fabric variation on 

which comprehensive explanations have been 

presented formerly. 

 

Fig. 13. Damage factors variations vs. axial strain 

increment of the analytical sample (a) Compressive 

damage above the shear band (b) Shear damage above 

the shear band (c) Compressive damage at the shear 

band area (d) Shear damage at the shear band area 
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Fig. 14. Variation of compressive damage factors of 

analytical sample during loading (below shear band) 

Shear ellipses of the plane rigidity factors also 

change during loading. As mentioned before, 

these ellipses at the start of loading were the result 

of the crossing of shear rigidity factor ellipsoids 

and different planes, and their shape and angle 

change during loading. To this end, at the shear 

band area, which is subject to the most rotation of 

the strain tensor principal axes, the consecutive 

variations of the ellipse of shear rigidity factors 

for planes 7, 10 and 17, are displayed in Figs. 

16(a) to 16(c). 

According to Figs. 16(a) to 16(c), it is seen that, 

depending on the positioning of plane, the ellipses 

of rigidity factors may show different behaviors. 

Some of these ellipses only face strength 

declination, and rotation does not occur on their 

axes, whereas in some other planes, in addition to 

strength reduction, rotation may occur on their 

axes. Eventually by using these ellipses on 

different planes, fabric and arrangement of grains 

and their variations could be found. 
 

 

Fig. 15. Variation of compressive damage factors of 

analytical sample during loading (mid area of shear 

band) 

13. Variation in Fabric of Grains in 

Different Planes of Sample 
In the previous sections it was stated that the 

loading process leads to fabric variation. It was 

also explained that considering the strength or 

rigidity which are the effects of material fabric, 

the grains orientation in each step of loading can, 

to a great extent, be specified. Therefore, in this 

section, comparing the measured empirical and 

analytical results, it is tried to display the ability 

of the suggested model in this regard. 

Position and orientation of planes V and S are 

described in section (8) and Fig 9(b) and (c). In 

this figure, the grains rotation angles on planes V 

and S, which are named   and  , respectively, 

are shown as well. These angles measure and 

show the diversion and rotation of the grains 

longest dimension during loading. Planes parallel 

to V in Fig. 9(b) divides the sample into some 

areas, where the shear band is located in area (-

1,0). Area (-2,-1) is also located below the shear 
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band. 

Distribution of the grains angle variation and 

their frequency ratio for plane V are shown, 

around the shear band and below it in Ref. [36]. 

According to the data given in this Ref., the 

average angle variation of the grains, which is 

empirically measured, is about 28.4º around the 

shear band and 7.9 º below the shear band. 

Formerly in section (5) in explaining induced 

anisotropy, it was explained how the grains and 

sand particles attach each other and make load 

transferring columns. According to empirical and 

laboratory observations, sand particles in these 

columns lean together from the bigger side, in 

order to provide a larger surface for load 

transferring. On the other hand, the most reduction 

of compressive rigidity and strength in the sample 

will be in the direction of columns formation. 

Therefore, according to the distribution of rigidity 

factors observed around a point, the direction of 

columns will be the very direction with the 

maximum rigidity reduction, and the direction 

perpendicular to it also shows the long dimension 

of the sand particles. Focusing on Figs. 14(f) and 

15(f), which respectively relate to the rigidity 

factors distribution of areas below and around the 

shear band, the average angle variation of the 

principal axes of Figs. is 28º and 8 º. This rotation 

of axes of the diagram of rigidity factors 

distribution, shows the grains rotation, which well 

conforms to the empirical value. 

Frequency distribution of angle variation of 

grains on plane S is also shown in Ref. [36]. 

According to the given information, the average 

value of the rotation of grains, which is 

empirically measured, equals 77º. Among the 17 

planes around the polyhedron, the closest plane to 

the shear band is plane No. 7 which in fact is not 

completely parallel to the shear band plane. But to 

study the issue, the analytical results of that plane, 

inevitably is used and presented in Fig. 16(a). 

According to this Fig., it is observed that the 

principal axes of the ellipse of shear rigidity 

factors distribution on this plane rotates for about 

52º. Since the material shear rigidity factor is 

affected by its grain’s orientation, this angle 

variation of the axes of shear rigidity factors 

distribution exactly reflects the value of sand 

particles rotation. Therefore, the “cause” could be 

found via “effect”. This value is 25º different from 

reality. There are some reasons to justify the 

discrepancy. The value of 77º is the highest 

frequency of distribution of grains longest axis 

orientation and of course the average value is 

much lower than this according to the reference. 

The other reason may be attributable to the 

thickness of the shear band and the location of 

which the angles of grains are measured and 

potentially are a little different from the element 

under study. Finally, the most important reason of 

this difference is the non-conformity of the shear 

band plane and plane No. 7, the analytical results 

of which are investigated. But the rotation of sand 

particle itself, and its orientation is correctly 

predicted in a conceptual manner. 

 

14. Summary and Conclusion 
1- The ellipsoids of shear and normal rigidity 

factors define a uniform and comprehensive 

mathematical rule around a material point, by 

which strength and rigidity factors of the material 

at each step of loading in any direction could be 

predicted and followed. Since the rigidity and 

strength of material depend on the texture and 

fabrication of sand particles, the occurred 

variations in the ellipsoids are indicative of the 

variations of the fabric and arrangement of sand 

particles. 

Applying the defined laws and damage factors 

values, it will be possible to compute the diversion 

of ellipses and ellipsoids. By using the damage 

factor values of each plane, direction and type of 

failure are also predictable, and eventually the 

type of failure and destruction of the sample will 

be predicted and interpreted. 

2- Non-coaxiality of stress and strain is also an 

inseparable component of the anisotropic material 

models. In this type of materials, considering the 

empirical and laboratory evidences, stress and 

strain vectors are not coaxial, and to achieve 

accurate computations on the behavior of 

material, the given model should be able to predict 

and compute it. According to the increase in 

anisotropy or inelasticity of material, the 

importance of this issue increases. Predicting this 

important behavioral characteristic of anisotropic 

material have become possible, using methods 

and techniques in the suggested model. 

3- After developing the given model, an 

operational program, in form of finite elements 

method for solving bigger problems, has been 

written, and introduced to Opensees as a new 

behavioral model. This code, as an operational 

program, provides the finite element program 

with the new model, so that it can use this model 

in solving bigger problems.  Finally, the program 
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analysis results were compared to the empirical 

results. Comparing the results proved the 

operational accuracy of the model, and it was 

found that the model has the competence to be 

applied to bigger problems. 

4- In real-world scenarios, we mostly deal with 

anisotropic materials. This research reveals that 

studying the behavior of anisotropic materials 

under the influence of rotational stresses is 

significantly different from the behavior of 

isotropic materials. In this case, stress and strain 

axes are not aligned with each other, leading to 

changes in the structure and texture of materials 

over time. Studying behavior models for 

anisotropic materials under variable stresses is of 

great importance in drilling industries, especially 

in the oil and gas upstream sector, which is cost-

intensive. Inadequate and insufficient studies in 

this regard can result in operational failures.  
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