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Abstract

 

In this paper two new approaches for building 3D Geomechanical Earth 

Model (GEM) were introduced. The first method is a hybrid of 

geostatistical estimators, Bayesian inference, Markov chain and Monte 

Carlo, which is called Model Based Geostatistics (MBG). It has u tilized  

to achieve more accurate geomechanical model and condition the model 

and parameters of variogram. The second approach is the integration of 

the models resulted of different estimators for more reliable-robust-

accurate estimation, and using Ordered Weighted Averaging (OWA) data 

fusion. More accurate estimations help to achieve better results with less 

uncertainty in the stage of data fusion. 

Ordinary Kriging (OK), Universal Kriging (UK), MBG and OWA were utilized for making 3D GEM 

of Unconfined Compression Stress (UCS) in a reservoir of an oil field in Dezful Embayment. The results 

were shown that the accuracy of MBG was twice of UK, whereas the model obtained of OK was 

unacceptable. The results of OWA were even 40% better than MBG.   

Asmari Reservoir, 

Geostatistical Estimation 

with Bayesian Inference, 

Markov Chain – Monte 

Carlo, Model Based 

Geostatistics, Ordered 

Weighted Averaging, 

Unconfined Compression 

Stress 

1. Introduction 

Different methods are developed for 3D 

modeling of geological, reservoir and 

geomechanical properties with different 

individual result. Consequently, depending 

on the number of modeling methods are used, 

different estimations in each block will 

achieve with different errors. Geostatistical 

(Almeida, 1999; Hu and Le Ravalec-Dupin, 

2004), intelligent (Hamada and Elshafei, 

2009; Cao et al., 2015; Karimi et al., 2016), 

fractal (Hewett, 1986; Hewett, 1993; Al-

Zainaldin et al., 2017), and hybrid (Michael 

et al., 2010; Shiri et al., 2012) based methods 

are examples that are used to modeling 

different properties of a heterogeneous 

reservoirs. Other approaches like analytical, 

geometrical, statistical, conditional, and 

numerical methods are also utilized for this 

purpose. Using chain estimators, especially 

in the case of lack of adequate data, increases 

the chance to access to a better model. 

Effective ranking of property modeling is the 

key in developing chain estimators (Tyagi et 

al., 2008 and 2009). Seismic attributes, 

petrophysical data, image logs, core and 

drilling data, in situ and lab mechanical tests 

are commonly data in developing a chain 

estimator. Scale incompatibility between 

various sources of the data is a challeng in 

using chain estimators, which are 

investigated in some researches (Masoudi et 

al., 2017; 2018). The geostatistical simulators 

are widely used in petroleum engineering. 

The reason is the capability of presenting 

different realizations, slightly avoid of 

smoothing geostatistical estimators, 
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achieving a more reliable static model, and 

considering fluid flow simulation (Deutsch, 

2006; Pyrcz and Deutsch, 2014). Building 3D 

GEM using object based modeling methods, 

e.g. multiple point statistics, are also advised 

(Souche et al., 2015). Multiple point 

statistics, especially when seismic attributes 

are available, are going to be popular 

(Bavand Savadkoohi et al., 2018). However, 

their main disadvantage is significant 

uncertainty associated with training images 

(Mariethoz and Caers, 2014; Mariethoz, 

2018). Some shortcomings were addressed in 

using geostatistical methods to make a 3D 

GEM (Deutsch, 2006; Rasouli and 

Tokhmechi, 2010). For instance, these 

methods have pointed to the limitations of 

variogram, and smoothing effect of Kriging, 

but they have offered alternative methods. 

Literature shows a significant increasing 

trend to build 3D GEM by using intelligent 

methods. Multi-Layer-Perceptron (MLP), 

Radial Basis Function (RBF), Wavenet, and 

Wavelet Neural Network (WNN) are 

examples of the networks were recently 

utilized to estimate 3D GEM (Zhang and 

Bevenista, 1992; Fang and Chow, 2006; 

Alexandridis and Zapranis, 2013; Tokhmechi 

et al., 2018a; 2018b). 

Because of the problems associated in 

making 3D GEM by different methods, 

comparison between the applications of the 

methods have been also investigated 

(Abdideh and Ghasemi, 2014). Abdideh and 

Ghasemi have not claimed that the results of 

research is generalized. Kamali and Ostad et 

al., have investigated the challenges of 

building 3D GEMs in carbonate reservoirs 

and have reported valuable approaches to 

make more reliable models (Kamali et al., 

2013; Ostad et al., 2018). 

Model based geostatistics that has rarely used 

in geosciences, is an estimator, which 

conditions the results to the geological and 

tectonical behavior of the field. Literature 

confirms that MBG has been effective 

estimator in other disciplines (Diggle and 

Ribeiro, 2007). In the current paper, two 

different approaches were used to estimate 

mechanical properties. Applicability of MBG 

to making a 3D GEM and sensor data fusion, 

which is a powerful approach to integrate 

different models, were used to achieve more 

robust GEM. Previous studies have shown 

that, the results of developing 1D GEM using 

data fusion have been wonderful (Tokhmechi 

et al., 2009; Soroush et al., 2010). The 

applicability of data fusion to build 3D GEM 

is also investigated in current paper. 

 

2. Methodologies 

In this section, model based geostatistics and 

ordered weighted averaging are briefly 

introduced. 

 

2-1 Model Based Geostatistics 

Suppose that  X is the input matrix and  T the 

output vector based on the equations (1) and 

(2): 

𝑋 = [
𝑥1

1 ⋯ 𝑥1
𝑚

⋮ ⋱ ⋮
𝑥𝑛

1 ⋯ 𝑥𝑛
𝑚

] (1) 

 

𝑇 = [

𝑡1

.

.
𝑡𝑛

] (2) 

where 𝑥𝑖
𝑗
 is the input j in the block i. Block 
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coordinates (x, y and z) and any continues 

properties could be the input data, similar to 

seismic attributes. n and m are the number of 

blocks and continues properties respectively, 

that might be estimated. 𝑡1 to 𝑡𝑛 are observed 

outputs.  

For example in schematic reservoir, five 

wells were drilled (Figure 1). Assume that 1D 

GEMs in all wells were developed and UCSs 

with 15 cm resolution were estimated. 

Suppose that the final goal is estimation of 

UCS in reservoir’s lattice. In this case, 

𝑡𝑛stands for estimated UCSs in the wells.

 

 

Figure 1. Schematic location of five wells, which have been drilled on a reservoir, and designed 

lattice for making 3D GEM. 

  
In Figure 1, the coordinates of each data in 

the wells are considered as 𝑥𝑖
1, 𝑥𝑖

2 and 𝑥𝑖
3. 

Suppose two seismic attributes as well as 

porosity are available as continues input data. 

Assume that seismic attributes have been 

recorded, and porosity have been estimated in 

each block. Consequently, input matrix also 

consists of 𝑥𝑖
4, 𝑥𝑖

5 and 𝑥𝑖
6. Also assume that a 

linear trend was fitted to the UCS data: 

 𝑇𝑖 = 𝑈𝐶𝑆𝑖

= 𝛽0 + 𝛽1𝑥𝑖
1 + 𝛽2𝑥𝑖

2

+ ⋯ + 𝛽𝑚𝑥𝑖
𝑚 + 𝜀𝑖 

(3) 

where, in hypothetical problem, m is 

equal to 6, and 𝑥𝑖
1 to 𝑥𝑖

6 are x, y, z, 1st and 2nd 

seismic attributes and porosity respectively. 

𝑥𝑖
1 to 𝑥𝑖

6, must be available in all blocks. 𝛽0 

stands for intercept and 𝛽1 to 𝛽𝑚 (𝛽6), slopes 

or weights of the input data. 𝜀𝑖 is random 

residual, which might be estimated in each 

block.  

The first step is to model the data trend 

based on the observations. Weights in 

equation 3, must be optimized in this step. 

The average of the residuals 𝜀 is usually equal 

to zero. Quasi-stationary hypothesis is 

indefeasible and their estimation using 

geostatistical methods could be possible. 

It will be possible to fit a trend surface to 

all blocks, represented in Figure 1. It should 

Top of 

Reservoir 
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be attention that 𝑥𝑖 and 𝛽 have to be 

determined in this step; so, fitting the trend 

surface must be possible. Residuals, in each 

block, might be estimated using geostatistical 

methods. Usually ordinary Kriging (OK) is 

suitable for this purpose.  

Variogram modeling and optimization of 

its parameters (range (a), nugget (C0) and sill 

(C)) are the most important parameters for 

estimation of residuals. 𝜃 and 𝛽 are as the 

parameters of variogram and trend, 

respectively. They have to be optimized in 

this step. Assuming that aforementioned 

tasks have done, UCS is so far estimated 

using universal Kriging (UK). 

When limited database is available, 

variogram modeling and optimization of 

parameters are problem and subjective. 

Based on the models, which have been 

applied, and the person who modeled data 

there would be different results. MBG is an 

approach helps to achieve a more 

reliable/robust model. In literature of MBG, 

UK is called likelihood (Diggle and Ribeiro, 

2007) according to the equation (4): 

 𝐿 (𝜁|𝑇) (4) 

where T is observed feature space 

(outputs in equation 2). For instance, in this 

paper T is equivalent with UCS resulted from 

1D GEM. 𝜁 is represents the parameters 

might be optimized, and is defined by the 

equation (5): 

 𝜁 =  (𝛽, 𝜃) (5) 

As a result, likelihood is in fact 

estimation using UK, condition to the 

observed data. In reality presenting an 

approximation of 𝜁 is possible:  

 𝜁 =  (𝛽̂,  𝜃̂) (6) 

where ζ̂, β̂ and  θ̂ are approximation of 

the nominated parameters. Final estimation 

or posteriori in Kriging with Bayes inference 

(MBG), achieves from multiplication of 

likelihood in priori (Yamamoto, 2007; 

Brown, 2015; Diggle and Giorgi, 2015): 

 𝛤(𝜁|𝑇) ∝  𝐿(𝜁|𝑇) 𝜋(𝜁) (7) 

In which 𝜋(𝜁) and 𝛤(𝜁|𝑇) are priori and 

posteriori respectively. As aforementioned, 

estimation using UK was called likelihood. 

Estimation variance, which in UK just 

depends on residuals (𝜀), which can also be 

calculated. Therefore, it will be possible to 

give a Probability Density Function (pdf) for 

likelihood of each block (Figure 2). 

Priori is also the results of UK. However, 

in the case of priori, the parameters of the 

variogram (range, nugget, and sill) must 

achieved from similar reservoirs. Suppose 

that 3D GEM for UCS has been built in the 

similar reservoirs, where their database is 

more completed than the currently studying 

reservoir. The average of variogram 

parameters of similar reservoirs, which must 

be extracted and utilized for making a new 

3D GEM, is called priori. In the case of UCS 

at Dezful Embayment, the directions of 

stresses are well-known (Figure 3). 

Considering these information in modeling of 

UCS is the priori in fact. 

A schematic pdf of the priori for an 

example block is presented in Figure 2. 

Posteriori (𝛤(𝜁|𝑇)) or in fact MBG, achieves 

from multiplying of likelihood (𝐿(𝜁|𝑇)) in 

priori (𝜋(𝜁)) (Figure 2).  

The remained question is how should 

multiply the priori in likelihood? In fact, this 

multiplication is a complex and time 

consuming procedure. For example equation 

of likelihood is as follows (Diggle and 

Ribeiro, 2007): 
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 𝐿(𝛽, 𝜃|𝑇) = 𝑓(𝑇|𝛽, 𝜃)

=
1

(2𝜋)
𝑚

2⁄ |𝛴(𝜃)|
1

2⁄
𝑒𝑥𝑝 (−

1

2
(𝑇 − 𝑋𝑡𝛽)

𝑡
𝛴(𝜃)−1 (𝑇 − 𝑋𝑡𝛽)) (8) 

where 𝛴(𝜃) is the covariance matrix of 

variogram, or in another words, the 

variogram matrix of observed samples for 

residuals in estimation of each block. The 

approximation for trend is 𝑋𝑡𝛽. 𝑇 represents 

the observed UCS. The number of parameters 

utilized for trend modeling shows by m.  

 

  

Figure 2. Schematic image of multiplication of pdfs of likelihood in priori, and resulted 

posteriori (MBG). 

  

𝐿(𝜁|𝑇) 𝜋(𝜁) 

 Γ(𝜁|𝑇) 
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Figure 3. Stress direction in Dezful Embayment, might be utilized for approximation of the priori. 

An equation similar to equation 8 has to 

be developed for priori, while its 𝛴(𝜃) 

differs with likelihood. Both equations 

must be found for each block, then 

multiplied to each other, which is 

complex and time consuming proccess. 

Approximation of the posteriori using 

Markov Chain – Monte Carlo (MCMC1) 

is the well-known presented solution 

(Diggle and Ribeiro, 2007). 

2.2 Ordered Weighted Averaging 

Ordered weighted averaging (OWA) is an 

effective fuzzy fusion method introduced 

by Yager (1988). An OWA operator of 

dimension n (the number of estimates 

using different estimators) is a mapping F 

: Rn → R, that has an associated n vector, 

wi = (w1 ;w2 ; w3 ; w4 ;.....;wk ). For each 

i, where 1 ≤ i ≤ n , the following equations 

are correct: 

 

 1,0jw
 

(9) 

 

1
1




e

j

jw

 

(10) 

 

),1(...)...,,,( 2211

1

21 nkwbwbwbwbaaaF ekekkj

e

j

kjkekk 
  

                     

(11) 

                                                           
Diggle and  MCMC is well described in: 1 Ribeiro, 2007. Enthusiasts should review to the 

reference for details.   
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where bj is the jth largest element of the bag (a1, . . . , an), and k represents various blocks 

in the reservoir.  

  

     iinwii aMaxaaaFaMin  ,...,, 21  
(12) 

Output of OWA, is always in the range of fuzzy operators OR-AND (Hsu and Chen, 1996; 

Kuncheva and Krishnapuram, 1996). 
 








n

i
iwin

n
worness

11
1

)()(

 

(13) 

 

In order to minimize error (e), wi has to be optimized: 

 

 













 



2

1

2211 ...
e

k

kekekk dwbwbwbSSE

 

(14) 

where dk represents real UCS in depth k of the wells, which their 1D GEM is available. 

In Optimistic OWA, wi is defined as a function of Orness coefficient (α). α characterizes 

the degree in which the aggregation is like or (Max) operation (Yager, 1988):

  

10;)1(;)1(

...;;)1();1(;

12

1

2

321
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

 
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e

e

e

e ww

www

 

(15) 

In pessimistic OWA, wi is defined as another function of Orness coefficient (α): 
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(16) 

To find the optimum e, α should vary from 0 to 1 and e should be recalculated. The α 

which minimizes e, shows optimum wi. 
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3. Case Study of the Application of the 

Methods 

Ordinary Kriging (OK), Universal 

Kriging (UK), Model Based Geostatistics 

(MBG) and Ordered Weighted Averaging 

(OWA) with Optimistic (OOWA) and 

Pessimistic (POWA) mechanisms were 

applied for making a 3D GEM of UCS in 

one of the carbonate reservoirs in south-

west of Iran. In this section the results of 

the models and comparison are presented. 

 

 

 

3.1 Model Based Geostatistics 

In the current study, modeling of priority 

was impossible because the models of 

similar reservoirs was not available. 

Inevitably, a portion of the database was 

considered for modeling of priority, and 

the rest for likelihood. Available well-

data are represented in Figure 4. The UCS 

data for seven wells were available. The 

data of two wells (black circles) were 

selected to modeling the likelihood, and 

the rest (red circles) for priori.  

 

 

Figure 4. Schematic image of multiplication of pdfs of likelihood in priori, and resulted 

posteriori (MBG). 

 

In geomechanical data, the highly 

possibility of existence of the trend must 

be encountered in geostatistical 

modeling. The reason is that majority of 

geomechanical properties differ with 

changing of lithology, depth, or even 

horizontal directions. Therefore, 

investigation of the existence of the trend, 

even before studying the distribution of 

the data, is advised. In the case of 

existence of trend, the distribution of 

residuals might be investigated. The 

variability of UCS in one of the studied 

wells is plotted in Figure 5.a. Based on 

this log, UCS increases with depth. The 

probability distribution function (PDF) of 

the UCS (Figure 5.b) shows their bimodal 

distribution. 
  

N
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in one of the wells located in Dezful embayment (a)  ofFigure 5. USC log in Asmari reservoir 

and associated PDF (b). The residuals of UCS after applying linear trend equation (c) and the PDF 

of residuals (d). The residuals UCS after applying quadratic trend equation (e) and their PDF (f). 
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Residuals after subtracting linear trend from 

UCS data (Figure 5.c) shows that trend 

somewhat removed. PDF of these data 

(Figure 5.d) shows that the distribution of 

residuals has approached to normal 

distribution, while bimodal behavior is 

remained.  

Above procedure has replied with fitting 

quadratic trend function. Residuals and their 

PDF are plotted in Figures 5.e and 5.f 

respectively. The results shown that trend 

was removed, and PDF of residuals is almost 

Gaussian. As a result, UCS must be modeled 

using UK. For this purpose, quadratic trend 

were fitted and OK applied on the residuals. 

The calculated variograms in depth 

direction, and fitted model are displayed In 

Figure 6. Variogram shows a continuity in 

this direction.  

In Figure 7 the wireframe that UCS is 

modeled is displayed. The size of the blocks 

was considered equal to 50 - 50 m2 (Figure 

7.a). As the blocks outside the reservoir have 

to be removed, the border of the reservoir is 

plotted in Figure 7.b.   

In this study 3D GEM of UCS were 

modeled by using the following three 

methods: 

 OK: without considering the trend, 

and after applying a non-linear 

transformation over the data to 

achieve a semi-Gaussian 

distribution. Inverse transformation 

were applied on the estimated results. 

 UK: with considering a quadratic 

trend equation, and modeling the 

residuals using OK. In this case, PDF 

of the residuals were normal (Figure 

5.c); therefore, no transformation 

was applied on the data. 

 MBG: the basic method was UK, and 

priori also was modeled using UK.  

30 percent of UCSs of both studied wells 

were randomly selected as test data. These 

data were estimated using three methods, and 

the cross correlation between estimated 

amounts with real UCS were plotted in Figure 

8.   

 

 

Figure 6. Vertical variogram of UCS and Gaussian fitted model. Range, nugget and sill are 

respectively. 2, and 1115 MPa2estimated equal to 300 m, 170 MPa 
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Figure 7. a) A section of the reservoir and designed lattice. The location of the wells and border of 

the reservoir is displayed (b). 
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(a) 

 

(b) 

 

(c) 

Figure 8. Cross correlation of estimation of UCS using the methods a) OK, b) UK and c) MBG. 
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Based on Figure 8, there are significant 

difference between estimations using three 

methods, as follows: 

 The cloud of error around line 

UCS=OK (45 degree) is wide 

(Figure 8.a (OK)), which means 

relatively high error. Also, the line 

trend of cross correlation oblique to 

higher amounts, shown that results 

are biased. Bimodal distribution of 

the data (Figure 5.b) might be the 

reason of bias estimation.  

 Not only the cloud of error is 

narrower (Figure 8.b), but also the 

precision of the results is better and 

biasness is lower than OK. It is 

obvious that the results of estimation 

using UK is better than OK.  

 In the case of MBG, the biasness was 

almost be removed, and error cloud 

is obviously narrow, so its 

application is visually better than 

MBG.  

It might be mentioned that high CPU 

processing time is the main disadvantage of 

the MBG. For instance, in Table 1, CPU 

processing time of three methods were 

reported. Correlation coefficient between 

estimated and real data, sum of error (SE), 

corresponds with precision or biasness, and 

sum of squared error (SSE) which shown the 

accuracy, were also reported in Table 1. 

 

Table 1. Comparison between implementation of three estimators were used for modeling of 

UCS, from the aspect of CPU processing time, correlation coefficient, sum of error and sum of 

squared error.  

Method 
CPU Processing 

Time (S) 

Correlation 

Coefficient 

ErrorofSum

(MPa) 

Sum of Squared 

Error (MPa2) 

OK 112 0.905 22384 408472 

UK 98 0.929 310 53558 

MBG 447 0.967 -22 23748 

Based on Table 1, results of OK are obviously 

unacceptable. Also comparison between UK 

and MBG (Table 1) shown that MBG’s 

estimations were more reliable than UK. 

However, MBG’s CPU processing time is 

high. This will create highly problem when a 

giant reservoir must be modeled. INLA is the 

extension on MBG to decrease the time, 

which is not described in current paper 

(Zhang et al., 2016; Krainski et al., 2018).  

 

3.2 Ordered Weighted Averaging 

As previously described, integration of the 

results of different estimators to achieve more 

robust/reliable model, is the aim of applying 

of OWA. Therefore, OWA was applied over 

their results. In this section, the results of 

application of OWA over test data was 

presented. It should be mentioned that 30 

percent of the data were randomly selected 

for this purpose. For simplicity sake, all test 

data were considered as continues log. In 

Figure 9, estimated versus real UCS were 

plotted.  

Real UCS considered as desired result, 

and the results of OK, UK and MBG were 

fused using OWA. In Figure 10 the results of 

optimization of α using optimistic (OOWA) 

and pessimistic (POWA) mechanisms were 

displayed. Processing of OWA operator is 

usually so fast. For example in current study, 

processing time was less that one second. In 

Table 2, correlation coefficient between real 

and estimated UCSs, as well as SE and SSE 

of estimated UCSs, for MBG, OOWA and 

POWA were reported. In the case of using 

OWA, in comparison with MBG, SSE has 

fallen down about 40 %. (Table 2). The 

estimation was unbiased with acceptable 

precision. Cross validation between real UCS 

and estimated ones using OWA (Figure 11) 

were shown highly acceptable results with 

narrow error cloud and slope of correlation 
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line around 45 degree.  

    

Figure 9. Real versus estimated UCS using three methods: OK, UK and MBG for the test data. 
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Figure 10. The results of optimization of the weights of OWA using Yager mechanisms. 

 

Table 2. Comparison of the application of MBG with optimistic and pessimistic OWA in 

modeling of UCS, from the aspect of correlation coefficient, sum of error and sum of squared 

error. 

Method 
Correlation 

Coefficient 

Sum of Error 

(MPa) 

Sum of Squared 

)2Error (MPa 

MBG 0.967 -22 23748 

Optimistic OWA 0.952 -24 18213 

Pessimistic OWA 0.964 -19 17249 
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Figure 11. Cross validation of estimation of UCS using OWA with mechanisms a) optimistic 

and b) pessimistic. 
 

To better show how OWA works, some parts 

of calculations for pessimistic mechanism 

were shown (Figure 12). Based on the Figure 

10 optimum α in pessimistic mechanism is 

equal to 0.35. Therefore, optimum weights 

(three weights) must be calculated using 

equation 16. It should be repeated that the 

results achieved from three estimators (OK, 

UK and MBG) might be fused together. 

Weights are calculated as follows: 

w1 = αn−1 = 0.353−1 = 0.1225 

w2 = wn−1 = (1 − α)α = 0.65 × 0.35

= 0.2275 

w3 = wn = (1 − α) = 0.65 

UCS = 1.0005 OOWA + 0.75

R² = 0.952
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UCS  POWA  w3 = 0.65 w2 = 0.2275 w1 = 0.1225  OK UK MBG 

66.41786  69.43642  64.38376 78.4813 79.44882  78.4813 79.44882 64.38376 

70.32989  72.13304  67.58194 77.17888 86.91094  86.91094 77.17888 67.58194 

71.15673  72.72442  70.66697 76.07553 77.41805  76.07553 77.41805 70.66697 

35.22758  37.93675  34.6404 41.76611 48.3159  48.3159 41.76611 34.6404 

61.5109  62.52115  57.26812 65.44498 84.96446  84.96446 57.26812 65.44498 

43.72851  50.92357  48.06481 54.36213 59.70656  59.70656 48.06481 54.36213 

52.18249  54.4598  52.81068 56.63993 59.16145  59.16145 56.63993 52.81068 

86.44432  88.32587  86.36212 90.81075 94.13097  94.13097 90.81075 86.36212 

73.05639  73.31185  66.87946 78.99369 96.89091  96.89091 78.99369 66.87946 

97.09228  94.57052  88.26193 105.3237 108.0746  108.0746 105.3237 88.26193 

69.37656  70.07785  66.34811 73.73548 83.07563  83.07563 73.73548 66.34811 

53.66707  50.94379  45.36551 53.49219 75.81009  75.81009 53.49219 45.36551 

65.5846  67.85186  61.24626 67.54659 103.469  103.469 61.24626 67.54659 

104.2998  104.6311  102.1673 105.8995 115.3482  115.3482 105.8995 102.1673 

80.80992  80.84339  76.91305 84.20476 95.45573  95.45573 76.91305 84.20476 

55.94158  57.19472  53.94303 58.38394 72.24004  72.24004 53.94303 58.38394 

44.89022  45.06215  40.64613 48.71193 61.71597  61.71597 40.64613 48.71193 

60.10547  65.97566  63.58543 68.48319 74.00166  74.00166 63.58543 68.48319 

70.71894  71.03056  68.29326 69.10229 89.1361  89.1361 68.29326 69.10229 

47.49572  47.71008  42.88792 
56.29831 

57.3475  56.29831 57.3475 42.88792 

 

 

 

 

Figure 12. The procedure of calculation of UCS using POWA in 20 different depths. Highest estimations were 

highlighted with light gray, second ones with light brown and the rest without trim. 

The results of 

estimations are 

descending sorted 

Optimum weights in POWA 
Summation of the weights multiply in 

ordered estimations (final output of POWA) 
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In Figure 12, the highest estimation was 

highlighted with light gray, the middle with 

light brown and the rest without shading. 

Then results were descending sorted. Sorted 

results were inner product into optimized 

weights. Summation of the outcomes is called 

POWA. One by one comparison between 

POWA and also MBG with real UCS, shown 

that results of POWA were more robust and 

compatible with real UCS.  

 

4. Conclusion 

Building a 3D geomechanical model is a 

complex procedure, and existence of trend for 

mechanical properties is anticipated, also 

their behavior is usually highly 

heterogeneous. In the current paper, two new 

methods, MBG and OWA were introduced 

and could help to achieve more reliable 3D 

geomechanical model. Application of the 

methods to modeling UCS over two wells in 

a reservoir located in south-west of Iran were 

investigated. Comparison between the results 

with OK and UK shown that the accuracy and 

precision of newly introduced methods were 

considerably better than common estimators. 

By the meanwhile, it observed that running of 

MBG is time consuming; therefore, it 

probably will not be feasible to build a 3D 

geomechanical earth model using MBG. 

INLA, is a recently developed extension of 

MBG, which runs so faster. Researchers are 

advised to focus on INLA as a powerful 

estimator to make 3D GEM in giant 

reservoirs. 
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