@article { author = {Abdollahipour, Abolfazl and Soltanian, Hamid and Fatehi Marji, Mohammad and Mortazavi, Seyed Alireza}, title = {Field design of hydraulic fracturing in a sandstone formation (Case study: A vertical well in Hugoton gas field in the USA)}, journal = {Journal of Petroleum Geomechanics}, volume = {1}, number = {2}, pages = {1-21}, year = {2017}, publisher = {Petroleum Geomechanics Association}, issn = {2538-4651}, eissn = {2538-4643}, doi = {10.22107/jpg.2017.80389.1005}, abstract = {Summary Hydraulic fracturing (HF) is one of the most important technologies ever developed by the oil industry. In this paper, a hydraulic fracture job is designed for Hugoton gas field in a relatively low permeability sandstone in a vertical well. A step by step procedure is introduced and followed to determine stresses, pressures, proper proppant selection, fluid loss volume, required volume of fracturing fluid, pumping duration and rates, geometry of the expected hydraulic fracture and job efficiency. The HF design is compared with numerical results which showed a good agreement. Based on the design parameters it is expected an HF half-length of 500 ft. height of 173 ft. could be achieved at the end of the treatment. Introduction Hydraulic fracturing is a widespread technology used in oil industry to enhance the production. The technology has given the opportunity the produce from many previously un-economic reservoirs. Unlike drilling technology which has been extensively developed in the past decades, most HF technology development was achieved in 1950s and 1960s. The developed design of HF can still be an important part of an HF design without the need of advanced numerical modeling. The classic HF design uses some simplifications that may reduce the accuracy of the method. This shortcoming may be overcame by complementary numerical modeling. However, the classic design is still an essential part of an HF design. Methodology and Approaches The first step in an HF design is determining in-situ stresses and pressures and making sure of their accuracy and reliability. The in-situ stresses were estimated based on empirical gradients. Then the results were calibrated by several well tests such as SRT, DFIT, etc. These tests’ results were also used to calibrate other inputs including pore pressure, lost circulation coefficient etc. An appropriate proppant type was selected based on the required permeability and the cost of the proppant. Results and Conclusions A complete schedule for HF job including injection volume, pump rate, Pad stage volume, proppant usage and fluid efficiency was designed and presented. Based on the design, a hydraulic fracture half-length of 500 ft. with 173 ft. height was expected. Comparison of results of a fully 3D numerical model (with similar input variables, already available from previous studies) and a P3D model (with exact input parameters) with expected design results showed a good agreement. The propagated fracture length and height and also proppant distribution in fractures of the numerical model are in agreement with the expected results. The design procedure proposed in this paper may be used as a guideline for a successful HF design of vertical wells.}, keywords = {Filed design,Hydraulic fracturing,Vertical well,Hugoton gas field,SRT,DFIT,MiniFrac}, title_fa = {طراحی میدانی عملیات شکست هیدرولیکی در سازند ماسه سنگی (مطالعه موردی: چاه قائم در میدان گازی هیوگوتون آمریکا)}, abstract_fa = {شکست هیدرولیکی یکی از مهم‌ترین فنّاوری‌های توسعه‌یافته در صنعت نفت است. در این مقاله،‌ طراحی عملیات شکست هیدرولیکی با استفاده از روش‌های تحلیلی در میدان گازی هیوگوتون در سازند ماسه‌سنگی با نفوذپذیری تقریباً کم انجام خواهد شد. طراحی به‌صورت گام‌به‌گام و شامل تخمین تنش و فشار، انتخاب پروپانت مناسب،‌ تعیین میزان هرز روی سیال،‌ حجم سیال موردنیاز،‌ فشارهای پمپاژ،‌ زمان پمپاژ،‌ تخمین هندسه و طول شکستگی مورد انتظار و بازدهی عملیات است. از نتایج آزمایش‌های درون‌چاهی ازجمله SRT، DFIT و ... و روش تحلیل فشار شکست به‌منظور بهینه‌سازی و کالیبراسیون پارامترهای طراحی استفاده شد. بر اساس طراحی، طول شکست هیدرولیکی به ft 500 و ارتفاع آن به ft 173 خواهد رسید. نتایج تحقیق با نتایج دو مدل عددی کاملا سه‌بُعدی و شبه‌سه‌بُعدی P3D با پارامترهای ورودی مشابه مقایسه شد. نتایج روش‌های عددی تطابق بسیار مناسب با انتظارات طراحی ارائه‌شده نشان داد. بطوریکه طول، ارتفاع و هندسه شکست، همچنین میزان توزیع پروپانت در شکستگی‌ها در مدل عددی هماهنگی خوبی با طراحی داشت. مدل P3D همچنین افزایش قابل توجه هدایت هیدرولیکی در شکست ایجاد شده را نشان می‌دهد. روند طراحی ارائه‌شده می‌تواند به‌عنوان یک راهنما برای طراحی موفق عملیات شکست هیدرولیکی مورداستفاده قرار گیرد.}, keywords_fa = {طراحی میدانی,شکست هیدرولیکی,چاه قائم,میدان گازی هیوگوتون,DFIT,SRT,MiniFrac}, url = {http://www.irpga-journal.ir/article_54533.html}, eprint = {http://www.irpga-journal.ir/article_54533_ff085499e17a376a9d6386c5d947952d.pdf} }