مدل‌سازی فیزیک سنگی در مخازن کربناته - مروری بر مدل‌های نظری و یک مطالعه موردی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی، دانشگاه تهران

2 عضو هیئت علمی- انستیتو مهندسی نفت- دانشگاه تهران

3 دانشکده مهندسی معدن، دانشکده فنی، دانشگاه تهران

چکیده

طیف گسترده‌ای از مدل‌های محیط مؤثر شامل مدل‌های تماسی (محیط دانه‌ای) و مدل‌های میانباری برای توصیف نظری ویژگی‌های کشسانی مؤثر سنگ‌های رسوبی معرفی شده است. با توجه به ساختار پیچیده‌تر فضای حفره‌ای در سنگ‌های کربناته نسبت به آواری‌ها، توسعه مدل فیزیک-سنگی در مخازن کربناته همواره با چالش‌های بیشتری روبرو بوده است. با در نظر گرفتن فرضیات و فیزیک مورداستفاده در توسعه مدل‌های میانباری، استفاده از این نوع مدل‌ها برای تعیین خواص کشسانی کربنات‌ها از توجیه بیشتری برخوردار می‌باشد. در این مقاله، ابتدا مبانی نظری، الگوریتم و روش اعمال چهار مدل فیزیک سنگی کاستر- تکسوز، تقریب خودسازگار، محیط مؤثر دیفرانسیلی و ژو-پین از گروه مدلهای میانباری‌ که برای مدل‌سازی فیزیک سنگی مخازن کربناته قابل‌استفاده هستند تشریح می شود. در ادامه، تجزیه ‌و تحلیل و مدل‌سازی فیزیک‌سنگی با استفاده از مدل‌های مذکور در چهار چاه هدف از یکی از مخازن کربناته جنوب غرب ایران انجام گرفته است. سرعت‌های امواج تراکمی و برشی در محدوده عمقی سازند کربناته در مخزن موردمطالعه با استفاده از هر چهار مدل مذکور تخمین زده شده و با داده‌های اندازه‌گیری شده در محل چاه‌ها به‌صورت کیفی و کمی مقایسه شده است. با توجه به فرضیات و چهارچوب مورداستفاده در این مطالعه، مدل ژو- پین نسبت به دیگر مدل-های فیزیک‌سنگی مورداستفاده در این پژوهش، در پیش‌بینی سرعت امواج تراکمی و برشی کارآیی و تطابق بهتری با داده‌های اندازه‌گیری شده (ضریب همبستگی بالاتر و میانگین خطای مطلق کمتر) نشان داد که نمایانگر اهمیت استفاده از چندین نوع تخلخل با نسبت ابعاد مختلف در سنگ کربناته مورد مطالعه است.

کلیدواژه‌ها


عنوان مقاله [English]

Rock physics modeling in carbonate reservoirs- Review of theoretical models and a case study

نویسندگان [English]

  • Fariba Mehmandoost 1
  • Mohammad Emami Niri 2
  • Soleila Aslani 3
1 College of Engineering, University of Tehran
2 Assistant Professor, Institute of Petroleum Engineering, College of Engineering, University of Tehran
3 school of mining engineering, college of engineering, University of Tehran
چکیده [English]

A wide range of the effective-medium models have been introduced to explain theoretically the effective elastic characteristics of the sedimentary rocks. They are classified into two main groups: contact models and inclusion models. Due to the more complex pore-space structure, rock physics modeling of carbonate rocks involves more challenges compared to the siliciclastics. Considering the assumptions/physical basis used in development of inclusion models, they are of high importance in the context of characterization of the elastic properties of carbonates. In this paper, the theoretical bases, algorithms and procedures of four widely-accepted inclusions models of Kuster-Toksoz, Self-Consistent (SC), Differential Effective Medium (DEM) and Xu-Payne has been first described. Based on these four inclusion models, rock physics analysis and modeling has been performed on four wells from a heterogeneous carbonate reservoir located in South-West of Iran. P-wave and S-wave velocities were estimated in the depth interval of Sarvak formation, and the results were then compared with the measured velocities. The qualitative and quantitative analyses of the results reveal that Xu-Payne model compared to the other three implemented rock physics models, gives a better consistency between modeled and measured data. In particular, the higher correlation coefficient and the lower mean absolute errors were observed between the measured velocities and the simulated ones by the Xu-Payne model at all the tested wells.

کلیدواژه‌ها [English]

  • Rock physics modeling
  • carbonate reservoirs
  • inclusion models
  • elastic properties
  • P-wave velocity
  • S-wave velocity
Anselmetti, F. S. and Eberli G. P., 1993, Controls on sonic velocity in carbonates: Pure and Applied Geophysics 141(2-4), 287-323.
Assefa, S., McCann, C. and Sothcott, J., 2003, Velocities of compressional and shear waves in limestones: Geophysical prospecting 51(1), 1-13.
Avseth, P., Mukerji, T. and Mavko, G., 2010, Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk: Cambridge university press.
Berryman, J. G. 1980, Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions: The Journal of the Acoustical Society of America 68(6), 1820-1831.
Berryman, J.G., 1995. Mixture theories for rock properties. In Rock Physics and Phase Relations: a Handbook of Physical Constants, ed. T.J. Ahrens. Washington, DC: American Geophysical Union, pp. 205–228.
Budiansky, B., 1965. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13, 223–227.
Cheng, C. H., 1993, Crack models for a transversely isotropic medium: Journal of Geophysical Research: Solid Earth 98(B1), 675-684.
Cleary, M. P., Lee, S. M. and Chen, I.W., 1980, Self-consistent techniques for heterogeneous media: Journal of the Engineering Mechanics Division 106(5), 861-887.
Dou, Q., Sun, Y. and Sullivan, C., 2009, Rock-physics-based heterogeneity characterization of a carbonate reservoir in the permian basin: SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1945-1949.
Eberli, G. P. 1997, Sonic velocity in carbonate sediments and rocks: Carbonate seismology 6, 53.
Eberli, G. P., Baechle, G.T., Anselmetti, F.S. and Incze, M.L., 2003, Factors controlling elastic properties in carbonate sediments and rocks: The Leading Edge 22(7), 654-660.
Fabricius, I. L., Bächle, G.T. and Eberli, G.P., 2010, Elastic moduli of dry and water-saturated carbonates— Effect of depositional texture, porosity, and permeability: Geophysics 75(3), N65-N78.
Gassmann, F., 1951, Uber die elastizitat poroser medien. Vier: Natur Gesellschaft, 96, 1–23.
Hill, R., 1952, The elastic behavior of crystalline aggregate. Proc. Phys. Soc., London A, 65, 349–354.
Hill, R., 1965, A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 13, 213–222.
Hudson, J., 1980, Overall properties of a cracked solid: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press.
Li, H., and Zhang, J., 2018, Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates: Journal of Applied Geophysics: 151, 175-183.
Jakobsen, M., Hudson, J.A. and Johansen, T. A., 2003, T-matrix approach to shale acoustics: Geophysical Journal International 154(2), 533-558.
Kumar, M. and Han D.-h., 2005, Pore shape effect on elastic properties of carbonate rocks: SEG Technical Program Expanded Abstracts 2005, Society of Exploration Geophysicists, 1477-1480.
Kuster, G. T. and Toksöz M. N., 1974, Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations: Geophysics 39(5), 587-606.
Lucia, F. J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization: AAPG bulletin 79(9), 1275-1300.
Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The rock physics handbook: Tools for seismic analysis of porous media: Cambridge university press.
Norris, A. 1985, A differential scheme for the effective moduli of composites: Mechanics of materials 4(1), 1-16.
O’Connell, R.J. and Budiansky, B., 1974. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79, 4626–4627.
Reuss, A., 1929, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58.
Ruiz, F.J., 2009. Porous grain model and equivalent elastic medium approach for predicting effective elastic properties of sedimentary rocks (Vol. 70, No. 10).
Sayers, C. M., 2008, The elastic properties of carbonates: The Leading Edge 27(8), 1020-1024.
Sun, Y., 2000, Core-log-seismic integration in hemipelagic marine sediments on the eastern flank of the Juan de Fuca Ridge: Proceedings of the Ocean Drilling Program, Scientific Results 168.
Voigt, W., 1907, Bestimmung der Elastizita¨tskonstanten von Eisenglanz. Ann. Phys., 24, 129–140.
Wood, A.W., 1955, A Textbook of Sound. New York: McMillan Co.
Wu, T.T., 1966. The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Solids Structures, 2, 1–8.
Xu, S. and Payne M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge 28(1), 66-74.
Xu, S. and White R. E, 1995, A new velocity model for clay‐sand mixtures: Geophysical prospecting 43(1), 91-118.
Zhao, L., Nasser, M. and Han, D. H., 2013, Quantitative geophysical pore-type characterization and its
geological implication in carbonate reservoirs: Geophysical prospecting 61(4), 827-841.
Zimmerman, R.W., 1991. Compressibility of Sandstones. New York: Elsevier. 
امامی نیری, م. (1396)، مدل‌سازی فیزیک‌سنگی در مخازن ماسه سنگی - مروری بر مدل‌های نظری و یک مثال کاربردی، نشریه علمی پژوهشی ژئومکانیک نفت 1( 2)، 74-85