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Keywords  Abstract 
Full identification and understanding of hydrocarbon reservoirs depends on 
knowing the mechanical properties. One of the main parameters that 
indicates mechanical properties is shear wave velocity. Bipolar sound 
recorder is among thee best tools for measuring shear wave velocity. This 
tool is not very popular due to the high costs of driving in the well despite 
the high accuracy. Shear wave velocity estimation methods include three 
main branches of experimental methods, regression and the use of machine 
learning algorithms or in other words artificial neural networks. The studied 
formation in this research is Sarvak in one of the oil fields in the south of 

Iran. The input data of the estimator model is the usual petrophysical logs that are driven and measured in 
many wells, and the output data is obtained from the DSI tool. In this research, data are pre-processed by 
removing noise effects. Then, to improve the estimation effectiveness, data with a high correlation 
coefficient are selected as input data. After that, shear wave velocity is estimated from petrophysical data 
with three types of multi-layer perceptron (MLP), multi-layer perceptron optimized by particle swarm 
optimization (MLP-PSO), and the introduction of a relatively new method of multi-layer perceptron-social 
ski drive (MLP-SSD). To compare the efficiency of the neural network method, two traditional 
experimental and regression methods used. The validation results show the better performance of the MLP-
SSD method. 

Shear wave velocity, 
Petrophysical logs, 
Deep learning, 
Multi-layer perceptron, 
Particle swarm 
optimization, 
Social ski drive, 
Sarvak formation 

 
1. Introduction 

The mechanical and geophysical properties 
of rock and formations are very important in 
predicting strategies and engineering planning in 
the oil industry. These properties play an essential 
role in the selection of casing pipe, the stability of 
the well, determining the lithology of the 
reservoir, detecting the fluid in the holes, and 
measuring the pore pressure. Direct and indirect 
methods are used to determine these properties, 
and recently indirect methods have been more 
widely used due to their lower cost and the use of 
well petrophysical information. The most 

important parameters for determining the 
mechanical properties are the compressional and 
shear wave velocity which by using petrophysical 
data and estimating these parameters, it is possible 
to obtain a more reliable answer for the needs of 
the oil industry. 

Neural networks, by simulating human 
learning and the training and testing system, can 
calculate linear and non-linear equations between 
the user's desired inputs and the desired output and 
have provided acceptable results in the field of 
petroleum engineering and related sciences [1]. 

Russell proposed the multi-layer neural 
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network in geophysics and geological sciences to 
evaluate reservoir properties so that other 
researchers can use this method in earth sciences 
[2]. 

Using the genetic algorithm, Moatazedian 
and colleagues predicted the compressional and 
shear wave velocity in the carbonate reservoir 
located in Abuzar and Handijan fields and 
compared it with the available real values [3].  

Alimoradi et al research focuses on 
improving the prediction of shear wave velocity 
in subsurface strata. This study uses geotechnical 
investigations, specifically the spectral analysis of 
surface waves (SASW) approach, and compares 
them to down hole test (DHT) data acquired from 
wells in the same location. They use a trained 
artificial neural network (ANN) to find nonlinear 
correlations between SASW results and DHT 
values. The results show that a well-trained neural 
network can accurately predict shear wave 
velocity between wells [4]. 

In 2013, Hamza estimated the average shear 
wave velocity for seismographic measurements of 
the California basin by using a combination of 
genetic algorithm and neural network and 
concluded that the hybrid correlation coefficient 
of neural network and genetic algorithm is better 
than multiple regression [5]. 

Also, in the same year, Zoveidavianpoor and 
colleagues predicted the shear wave velocity from 
petrophysical charts along a well in a carbonate 
field using the adaptive neuro-fuzzy inference 
system (ANFIS) and multiple linear regression 
[6]. 

Maleki has used the back-propagation (BP) 
method and support vector regression (SVR) in an 
article. Regarding this research, he has used the 
parameters related to resistivity tools, density, 
gamma-ray, caliper, and dipole sonic imager and 
proposed the limited effectiveness of the BP 
compared to the SVR method [7]. 

Singh has used the BP neural network to 
compare the function of shear wave estimation in 
horizontal and vertical wells and concluded that 
this network had a more appropriate estimation in 
vertical wells [8]. 

Asoodeh has used the alternative condition 
expectation (ACE) method in a gaseous carbonate 
reservoir to find the best relationship between 
input and output and to transform the data space 
into a larger space. In this research, the efficiency 
of converting the data space into a larger space has 
been remarkable [9]. 

Nourafkan and Kadkhodai Ilkhchi used the 
ant colony method which is based on finding the 
best food path for ants. They also used the fuzzy 
logic method for neural network input in the form 
of a neural network with an observer. GR, Depth, 
NPHI, PHOB, and PEF were the neural network’s 
inputs from the Cheshmeh-Khosh oil field [10].  

Mehrgini calculated the shear wave in the 
Mansouri formation using four types of neural 
networks. These four networks are ELMAN, 
ELMAN-PSO, MLP, and MLP-PSO. In the 
comparison between these methods, Mehrghini 
concluded that the ELMAN method had the best 
function in estimating the shear wave velocity 
[11]. 

Salaheddin Elkatatny and colleagues 
estimated shear wave velocity with three neural 
network techniques, ANFIS algorithm, and SVR, 
and among the three mentioned methods, the 
artificial network techniques provided more 
acceptable results [12]. 

Anemangely research about shear wave 
slowness estimation suggested that to achieve 
more efficient results, first, it is necessary to pre-
process the data, then, a non-dominated sorting 
algorithm (NSGA-II) should be used along with 
MLP neural network to select the best input 
parameters, and then, by using the selected input 
parameters and two algorithms: ANFIS-GA and 
ANFIS-PSO estimated shear wave slowness. The 
results of using these two algorithms showed that 
the ANFIS-PSO model has high accuracy in 
estimation [13].  

Learning based on the particle swarm 
optimization method was used in the article by 
Yang et al. This learning increases the 
improvement of the target parameter estimation. 
In this research, the combination of this method 
with the multi-layer perceptron neural network 
has been used [14].  

In relatively new research, the social-ski 
drive algorithm has been used. Tharwat and Gabel 
has mentioned that this algorithm has acceptable 
stability, because it is associated with modeling 
the movement of skiers in a certain interval and 
the limited fluctuation of values towards the goal. 
The combination of this algorithm with the multi-
layer perceptron neural network has been used in 
this research [15]. 

Zhang et al proposed a 1D convolutional 
neural network (1D-CNN) with different well 
reports to predict S-wave velocity. By combining 
reports from diverse wells, 1D-CNN outperforms 
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traditional machine learning methods, thereby 
increasing exploration accuracy and increasing oil 
and gas production in other fields [16]. 

Rajabi et al investigated the application of 
hybrid machine learning (HML) and deep 
learning (DL) algorithms for VS prediction using 
data from the Marun oil field in Iran. Comparison 
with HML algorithms and empirical equations 
shows that the DL model is slightly better than 
HML and significantly better than empirical 
equations. The findings showed potential 
improvements in the understanding of well 
instability, casing collapse problems, and 
increasing the stability of oil reservoirs through 
accurate VS predictions [17]. 

In this article, first, all available common log 
data were reviewed and the data that had the 
highest correlation with the shear wave velocity 
data were selected. Corrections and preparation 
conditions were made to these data. Then, the 
value of the shear wave velocity was first obtained 
from the empirical equations. Then it was 
calculated using the regression method and finally 
using three types of multi-layer perceptron 
(MLP), multi-layer perceptron-particle swarm 
optimization (MLP-PSO), and introducing a 
relatively new method of multi-layer perceptron-
social ski drive (MLP-SSD) to estimate shear 
wave velocity from petrophysical data. 

 
2. Theory and Methodology 
2.1. Methodology of multi-layer perceptron 

An artificial neural network consists of 
neurons connected in different layers that send 
information to each other [18–20]. In general, the 
role of neurons in this network is information 
processing, which is done by a mathematical 
processor called the activation function. The 
feedback multi-layer neural network is one of the 
most widely used neural network architectures, 
also known as multi-layer perceptron networks 
[21,22]. This network has the following 
specifications: 

1- Network processors consist of several 
different layers. 

2-  As its name suggests, there must be at 
least 2 layers in the network. 

3- The neurons of each layer are only 
allowed to receive signals from the 
processors of their previous layer, and 
the output signal is also applied to the 
next neurons. 

4- The inputs of the network are the 
influencing parameters of the output, so 
the number of input and output layer 
nodes is actually known from the 
beginning of using the network. 

The number of hidden layer nodes and the 
number of hidden layers is determined through 
trial and error. In fact, the number of nodes and 
hidden layers is determined when the network 
gives the best response. There are two major 
destructive and constructive methods in this type 
of network [23]. In the first method, the network 
starts with a large number of nodes and layers and 
reaches the optimal structure by removing 
additional units and related connections. The 
second method starts with a simple network with 
few hidden nodes, and by increasing the number 
of nodes, it moves forward until the minimum 
error. In most cases, one or two hidden layers are 
enough for proper information processing. The 
number of nodes in the hidden layer is usually half 
to two or three times the number of nodes in the 
input layer of the network. The initial weights are 
often considered random, although it is possible to 
give more weight to more effective inputs by 
knowing the input parameters from the beginning 
[24].  
 
2.2. Methodology of Particle Swarm 
Optimization (PSO) 

The particle swarm optimization (PSO) 
method is a type of optimization method that can 
be used to solve problems whose response is a 
point or a surface in n-dimensional space [14].  
The PSO algorithm based on a type of social 
behavior was first introduced by Kennedy and 
Eberhart.The creators of this algorithm believed 
that information sharing between members of a 
society plays a fundamental role in the evolution 
of that society [25].  

A simple PSO algorithm starts by 
considering a population that contains possible 
responses. Then, each particle (response) moves 
continuously and by repeating the process in the 
search space, and in this interval, it is attracted to 
the best fitting location found by itself (local 
optimum) or particles located in its neighborhood 
(global optimum). In fact, in a PSO algorithm, 
instead of determining the way a particle moves 
according to the common rules in the genetic 
algorithm, based on the values of a function, the 
type of movement is based on the experience of 
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the particle's previous movements and the 
experience of the movements of neighboring 
particles. Applying chaos theory can also help to 
adjust the basic constants of the algorithm as well 
as its related random variables [26]. 

In the primary PSO algorithm, the velocity of 
each particle was determined according to an 
equation and based on the previous velocity of the 
particle, the direction in which each particle 
reached the best and most optimal location, and 
also the direction of the best population in 
reaching the optimal location. After several 
experiments and mathematical simulations with 
this algorithm, a researcher suggested adding an 
inertia parameter to the velocity calculation 
equation so that trade-offs between global 
exploration and local extraction of each particle 
can be controlled [22,26].    
The evolution of the PSO velocity equation is as 
follows: 
If we consider 𝑔𝑔∗ as the global optimum, and 𝑥𝑥𝑖𝑖∗ 
as the local optimum, the speed of each particle is 
obtained from the following equation: 
𝑣𝑣𝑖𝑖𝑡𝑡+1
= 𝑣𝑣𝑖𝑖𝑡𝑡 + 𝛼𝛼𝛼𝛼1[𝑔𝑔∗ − 𝑥𝑥𝑖𝑖𝑡𝑡]
+ 𝛽𝛽𝛼𝛼2[𝑥𝑥𝑖𝑖∗ − 𝑥𝑥𝑖𝑖𝑡𝑡] 

 (1) 

In this equation, 𝛼𝛼1 and 𝛼𝛼2 are two random vectors 
whose input values are all between 0 and 1. 

It should be noted that the Hadamard product 
of two matrices u and v is used in this equation, 
not the normal product of two matrices, that is: 

[𝑢𝑢⨀𝑣𝑣]𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖  (2) 
The α and β parameters are the learning 

parameters or acceleration constants of the 
algorithm, which usually have a value close to 2: 
α ≈ β ≈ 2 (3) 

The initial location of the particles should be 
considered according to a continuous uniform 
distribution so that the particles can cover all the 
environment or at least most of it. This is a very 
important thing, especially in multi-mode 
problems. The initial velocity of the particles is 
considered to be zero; then their next location is 
obtained according to the following equation: 
𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑡𝑡+1 (4) 

Finally, as it was mentioned, the object of the 
velocity equation underwent a functional change 
by adding the inertia index. This equation is: 
𝑣𝑣𝑖𝑖𝑡𝑡+1
= 𝜃𝜃𝑣𝑣𝑖𝑖𝑡𝑡 + 𝛼𝛼𝛼𝛼1⨀[𝑔𝑔∗ − 𝑥𝑥𝑖𝑖𝑡𝑡]
+ 𝛽𝛽𝛼𝛼2⨀[𝑥𝑥𝑖𝑖∗ − 𝑥𝑥𝑖𝑖𝑡𝑡] 

(5) 

In this equation, θ has a value between 0 and 

1. In the simplest form of the network, the inertia 
function can be considered as a numerical 
constant and approximately θ ≈ 0.5 − 0.9. In this 
case, the algorithm performs the convergence 
process at a much higher speed.  
The main setting parameters of this algorithm are 
the number of particles and the number of rounds 
of repetition of the algorithm, which are 
determined according to the number of input data. 
Other parameters, such as the degree of excitation 
and the impact of particles on each other, can also 
be changed, and it is better to use them in the 
default mode [27] 
 
2.3. Methodology of Social Ski-drive (SSD) 

The social ski-drive (SSD) algorithm is a 
new optimization method that is based on the 
movement of skiers on the snow, or in other 
words, the track of their skis on the snow and 
downhill. This method was used in an article in 
2020 by [15] in an article combining the SVR 
method and compared with the SVR-PSO hybrid 
method. Since skiers use a spiral path for the best 
path to reach the goal, this optimization method is 
introduced. This method is a type of optimization 
method that can be used to solve problems whose 
response is a point or a surface in the n-
dimensional space.   

Therefore, as mentioned, the movement path 
of the particles is like sinusoidal equations and the 
particles do not go to infinity like the PSO 
algorithm and they move between certain values 
in search of the best response. Fig. 1 describes 
how two particles move in the search space. The 
particle A in the initial position in a non-linear 
path to reach the value of M first in the position A' 
and then in the position A" and finally approaches 
one of the three best responses. This algorithm 
gives the ability of better exploration and diverse 
directions to particles in a directed state [15]. 

 
Fig. 1. General schematic of the particle movements of 

the SSD algorithm towards the top three responses  
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In this algorithm, the initial position of the 
particles and their initial velocity are randomly 
selected, and the number of particles and the 
maximum number of repetitions are determined 
by the user. 

An SSD algorithm starts by considering a 
population that contains possible responses. First, 
it determines intervals for the data and divides the 
particles into parts. Then, each particle (response) 
moves continuously and by repeating the process 
in the search space and is attracted to the best 
fitting location found by itself (local optimum) or 
particles located in its neighborhood (global 
optimum). In fact, in an SSD algorithm, the way a 
particle moves according to the common rules in 
the genetic algorithm is not determined in terms 
of the values of a function, but the type of 
movement is based on the experience of the 
previous movements of the particle and the 
experience of the movements of neighboring 
particles. Then, each group of particles reaches the 
most optimal response and finally, it is averaged 
among these three responses and published as the 
best response [15].  

In the primary SSD algorithm, the velocity of 
each particle was determined according to the 
equation (8) and based on the previous velocity of 
the particle, the direction in which each particle 
reached the best and most optimal location, and 
also the direction of the best population in 
reaching the optimal location. Various factors are 
effective in this algorithm, they will be explained 
in more detail later [15]. 

• Position of particles in n-dimensional 
space (𝑋𝑋𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛): This value is useful for 
calculating the movement function of 
particles in n-dimensional space to 
estimate subsequent movements 
according to the initial position. 

• Best previous position (𝑃𝑃𝑖𝑖): The best 
values for all particles use optimization 
functions. Also, the best values are 
compared with the current values of the 
particles, and finally, the best position is 
saved. This technique of the SSD 
algorithm is something similar to the 
PSO algorithm. 

• Average of the best response (𝑀𝑀𝑖𝑖): In this 
algorithm, according to equation (6), the 
particles move to the three best responses 
and it is average between these three 
responses.  

𝑀𝑀 =
𝑋𝑋𝛼𝛼 + 𝑋𝑋𝛽𝛽 + 𝑋𝑋𝛾𝛾

3
 

(6) 

In the mentioned equation, the values of 
𝑋𝑋𝛼𝛼, 𝑋𝑋𝛽𝛽, and 𝑋𝑋𝛾𝛾 are the three best responses.  

• Particle velocity (𝑉𝑉𝑖𝑖): The position 
of each particle is updated with the 
sum of the previous position and this 
parameter, according to equation 
(7). 

𝑋𝑋𝑖𝑖𝑡𝑡+1 = 𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑉𝑉𝑖𝑖𝑡𝑡 (7) 
In the above equation, the velocity of the 

particles is expressed by the following equation: 
𝑉𝑉𝑖𝑖𝑡𝑡+1

= �
𝑐𝑐 sin(𝑟𝑟1) (𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡) + sin(𝑟𝑟1) (𝑀𝑀𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡)      𝑖𝑖   
𝑐𝑐 cos(𝑟𝑟1) (𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡) + cos(𝑟𝑟1) (𝑀𝑀𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡)       
 

 
(8) 

In the above equation, the values of 𝑟𝑟1 and 𝑟𝑟2 
are randomly selected from the interval [0 1]. The 
value of 𝑃𝑃𝑖𝑖  is the best response of particle i and 𝑀𝑀𝑖𝑖 
is the average response among all particles.  

The c value plays a balancing role between 
the search and exploration space and is calculated 
from the following equation: 
𝑐𝑐𝑡𝑡+1 = 𝛼𝛼𝑐𝑐𝑡𝑡 (9) 

The value of t is the current repetition 
number of the particle and the value of α is 
between zero and one to reduce the value of c. 
When the value of c tends to zero, in fact, the 
value of t tends to the value of 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. The 
maximum value of t is chosen by the user. 

Therefore, as seen in equation (8), the 
movement path of the particles does not go to 
infinity like the PSO algorithm, and they move 
between certain values in search of the best 
response. As a result, this procedure makes the 
stability of this algorithm more reliable than PSO 
[15].  In this algorithm, the initial position of the 
particles and their initial velocity are randomly 
selected, and the number of particles and the 
maximum number of repetitions are determined 
by the user. Fig. 2 briefly describes the general 
procedure of this algorithm [15].
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Fig. 2. The general trend of the SSD algorithm 

 
2.4. MLP-PSO 

The two feedback multilayer networks and 
particle motion swarm were explained in the 
previous section. In this section, the procedure of 
one of the main methods of this research is 
described.  
In other words, when a hybrid network is used, a 
combination of two types of algorithms is used for 
optimization. Optimization algorithms adjust the 
weights and biases in such a way that the amount 
of estimation error is minimized. That is, the 
objective function in optimization algorithms is 
the mean square of the error. So first, the number 
of neurons and hidden layers of the multilayer 
perceptron neural network is determined, and then 
the particle swarm learning algorithm is used to 
determine the optimal values of weights and bias 
with the number of particles used by the user and 
the maximum repetition values in the particle 
training algorithm. The best response is selected 
to estimate the shear wave velocity.  
 
 
 

2.5. MLP-SDD 
The working procedure of this hybrid 

network is the same as the MLP-PSO hybrid 
network that was explained in the previous 
section. In this algorithm, by optimizing the 
weights and biases, the values of neurons and 
intermediate layers are selected by the user for the 
objective function, i.e. the mean square of the 
errors, and then the SSD algorithm is used to learn 
the network, and the SSD algorithm procedure is 
used to learn the network and by determining the 
values of the number of particles and the 
maximum number of repetitions to achieve the 
best response, the error values and correlation 
coefficients between the estimated and measured 
shear wave velocity are obtained.  

To estimate the shear wave velocity, the data 
is entered into three main networks, namely MLP, 
MLP-PSO, and MLP-SSD. The important point is 
that for these three networks, the values of 
intermediate layers, the number of neurons, and 
the percentage of training and testing data must be 
the same. Fig. 3 explains the steps schematically 
in a completely summarized way.
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Fig. 3. General procedure 

 
3. Data processing and analysis and 
geological background 

Abteymour oil field is located 25 kilometers 
from the southwest of the Ahvaz field, between 
the Sosangard and Mansouri fields. This field, 
along with Susangerd and Mansouri oil fields, is 
located on a single structural height that has a 
northwest-southeast direction and is located in the 
west of Khuzestan Fig. 4 [28].  

Abteymour oil field has no outcrops on the 
surface of the earth and its structural form has 
been determined by geophysical operations. The 
structure of the Abteymour oil field is a gentle and 
symmetrical anticline with a length of 23 
kilometers and an average width of 5.6 kilometers 
on the horizon of Ilam. (The contact levels of 
water and initial oil are considered as the last 
parallel closed curve). The maximum slope of the 
northern and southern ridges on the horizon of 
Ilam is 5.5 and 6 degrees, respectively, and in the 
northwestern and southeastern capes, it is 3 and 
2.2 degrees[3]. 

On the horizon of Sarvak, the maximum 
slope of the northern ridges is 6 degrees and the 
southern ridges are 8 degrees and in the northwest 
and southeast capes, it is 3.2 and 2.2 degrees, 
respectively.  

The studied formation in this field is the 
Sarvak Formation, which contains 5.821 meters of 
limestone in the sample section, and its petrology 
includes the following three parts [3]: 

- 5.254 meters at the base: dark gray 
limestones with nodular, fine-grained, 
clay layering and containing traces of 
small ammonites with thin layers of dark 
gray marl interlayered 

- 534 meters in the middle: It consists of 
massive, rough, chalky light brown 
limestones along with pieces of Rudists, 
which 7.109 meters from the base of this 
part has brown to red siliceous nodules 
and in the middle part of this part cross 
classification has been observed.  

- 43 meters at the top: It consists of very 
thick to thick-layered limestones, with 
irregular weathering and stained with iron 
oxides. The lower limit of this formation 
in the sample section is gradual and 
concordant with the Kazhdomi formation, 
and the upper limit of the Sarvak 
limestone formation is mixed with the 
marls and shales of the Gurpi formation. 
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Fig. 4. Geographical location of Abteymour oil field in southwest Iran[29]

3.1. Data preparation 
There are 1042 available points that are 

located from the depth of 3315 to 3473.65 meters 
of well A and the data of depth, caliper, 
photoelectric factor (PEF), gamma ray radiation 
rate, resistivity, neutron porosity (NPHI), bulk 
density (RHOB), compressional wave velocity 
and shear wave velocity (which is also considered 

as an output parameter) are used by the DSI probe 
that is driven separately in the well and the 
collected data are placed in the equations related 
to the calculations of this tool and the values have 
been taken as compressional wave transit time 
(DTCO) and shear wave transit time (DTSM). A 
section of the data of well A are showed in      
Table 1.

 
Table 1. A section of the data bank extracted from well A 

 

Row Depth Caliper PEF GR RT NPHI RHOB Vp Vs 
1 3379.318 7.1989 4.7199 21.4273 38.5558 0.3248 2.5663 5.233732 2.771526 
2 3379.47 7.1989 4.8095 20.3052 120.4304 0.3248 2.5957 5.303517 2.745132 
3 3379.622 7.1929 4.8789 21.3181 155.5504 0.3248 2.6085 5.136519 2.72085 
4 3379.775 7.1567 4.9484 22.42 150.3951 0.3248 2.6215 5.081414 2.604754 
5 3379.927 7.1506 4.9565 26.659 72.2965 0.3248 2.6116 5.019928 2.59952 
6 3380.08 7.1567 4.9773 28.111 100.4453 0.3248 2.591 4.919589 2.566322 
7 3380.232 7.1397 4.9334 29.2803 99.7479 0.3248 2.5728 5.100658 2.527824 
8 3380.385 7.1325 4.8741 27.81 100.6385 0.3248 2.5663 5.277365 2.556026 
9 3380.537 7.1265 4.8192 25.4117 89.8469 0.3248 2.5786 5.291621 2.591991 
10 3380.689 7.1365 4.7784 25.0227 77.8917 0.3248 2.6019 5.214838 2.701062 
11 3380.842 7.1144 4.7894 24.18 56.7269 0.3248 2.6194 5.399009 2.757525 
12 3380.994 7.1083 4.7754 25.3495 45.7972 0.3248 2.6365 5.25801 2.672866 
13 3381.147 7.1083 4.7987 24.91 40.4876 0.3248 2.6414 5.247193 2.719399 
14 3381.299 7.1023 4.8305 26.1886 39.9267 0.328 2.6401 5.174451 2.758518 
15 3381.451 7.1144 4.8593 22.5894 39.5016 0.3312 2.6272 5.139932 2.753519 
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Fig. 5 shows the matrix of correlation 
coefficients of all petrophysical data and shear 
wave velocity. The slope of the lines that are close 
to one or minus one indicates a high correlation 
between the independent and dependent variables. 
Values close to one indicate a positive correlation. 
This means that as the independent variable 
increases, the dependent variable also increases. 
On the other hand, values close to minus one mean 

that as the independent variable increases, the 
dependent variable decreases. The efficiency of 
the correlation coefficient values is to select the 
parameters that have the greatest effect on the 
dependent variable. In this way, considering them 
as the input of the artificial intelligence algorithm, 
while achieving a model with high accuracy, the 
processing time and complexity of the model will 
be reduced. 

 
 

 
Fig. 5. Matrix of correlation coefficients between all input data and output data 

 
To prepare the input data, pre-processing has 

been done on the data, which includes quality 
control, environmental corrections, depth 
mismatching, bad hole, cycle skipping, ski pies, 
tool pick-ups, etc.  

Based on the Tukey method, in each category 
of input parameters, such as depth, caliper, PEF, 
etc., the first and third quartiles are determined 
using MATLAB software. Then, according to the 
following equations, the value of the lower inner 
fence (LIF) and the upper inner fence (UIF) are 
determined using the interquartile range (H). In 
the feature, according to LIF and UIF values, only 
the values that are smaller than LIF and larger than 

UIF are identified as outliers and the points 
corresponding to them are removed [30].  

H=1.5× (𝑄𝑄3 − 𝑄𝑄1) 
 

(10) 

LIF=𝑄𝑄1- H 
 

(11) 

UIF=𝑄𝑄3+ H 
 

(12) 

As a result of applying this step to the input 
parameters of this research, out of a total of 1042 
available points, 194 points were identified as 
outliers and discarded. Depth, neutron, density, 
and shear wave velocity factors have the highest 
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correlation coefficients among the 8 petrophysical 
factors, and these factors are selected as the input 
data of the estimator network.  

The input data have different scales, so they 
have been normalized so that by making their 
scales equal, a suitable weight can be assigned 
according to the importance of that parameter in 
the target estimation in the model training stage. 
Different linear and non-linear methods have been 
presented to normalize the data, and in this 
research, the linear method will be used. This 
stage is such that to map the data scale between 
zero (not zero itself) and one, the largest 
numerical value of each parameter is determined 
and all parameter values are divided by that value. 
To review and analyze the methods used in this 
research, among all the previous data, which 
includes 848 points, 10% of them are randomly 
selected and discarded. All the methods that will 
be mentioned estimate the shear wave velocity 
with the remaining 90%, and after that, ten percent 
of the data that was discarded becomes the input 
of the estimator model. The importance of this 
step is how much stability the estimation methods 
have in dealing with the data that has been left out.  

 
4. Data processing 
4.1. Experimental and regression methods 

To investigate the methods of determining 
the shear wave velocity, first, the experimental 
methods to determine the shear wave speed were 
discussed. To check the accuracy and efficiency 
of these methods, the shear wave velocity 
obtained from DSI diagrams and the shear wave 
velocity obtained from experimental equations 
were compared. 

Pickett's method calculated the linear 
relationship between shear wave velocity and 
compressional velocity for limestone formations 
[31]. 
𝑣𝑣𝑠𝑠 =

𝑣𝑣𝑝𝑝
1/9

 (13) 

Also, for the data related to limestone 
formations, Castagna and Grinberg presented 
non-linear relationships with dependence on 
compressional wave velocity in single-grained 

pure and water-saturated lithologies [32].  
𝑣𝑣𝑠𝑠 = 𝑎𝑎𝑣𝑣𝑝𝑝2 + 𝑏𝑏𝑣𝑣𝑝𝑝 + 𝑐𝑐 (14) 

Brocher by examining a huge range of 
different lithologies, reached the following 
nonlinear equation of compressional and shear 
wave velocity in limestone formations [33]: 
𝑣𝑣𝑠𝑠 = 0/7858 − 1/2344𝑣𝑣𝑝𝑝 + 0/794𝑣𝑣𝑝𝑝2

− 0/1238𝑣𝑣𝑝𝑝3 + 0/0064𝑣𝑣𝑝𝑝4 
 (15) 

In the regression method, using statistical 
software such as SPSS that has the regression 
estimator module, the shear wave velocity was 
estimated using the compressional wave velocity 
that is available from the petrophysical data of the 
studied field. The resulting equation of this 
estimate is equation (16). 

𝑉𝑉𝑠𝑠 = −0/1395𝑉𝑉𝑝𝑝2 +  1/766𝑉𝑉𝑝𝑝 − 2/636 
 (16) 

Table 3 shows all the results of the 
experimental and regression methods of shear 
wave velocity estimation. As it is clear in this 
table, among these methods, the regression 
method is more accurate. The reasons for this 
conclusion are first the lower values of RMSE and 
then the higher values of the coefficient of 
determination. 

 
4.2. MLP network 

The neural network was embedded and all 
the values were recorded during 20 repetitions. In 
each part of the test and training, the highest and 
the lowest amount of error were separated and 
subtracted from each other. This interval is very 
important to evaluate the stability of the network. 
The lower the variability of this interval, the more 
stable the network is, and as a result, the network 
will be more favorable. Fig. 6 shows the 
correlation coefficient between the actual and 
predicted shear wave velocity in the two stages of 
training and testing. Fig. 7 and Fig. 8 Comparison 
diagram between the estimated shear wave 
velocity of the MLP method and the actual shear 
wave velocity along the well in the training phase 
- model development phase. Comparison of test 
and training error values of this network are 
shown in Table 2.
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Fig. 6. Correlation coefficient between real and estimated shear wave speed in two parts of training (left image) 

and test (right image) of MLP network in the model development phase 
 

  
Fig. 7. Comparison diagram between the estimated 

shear wave velocity of the MLP method and the actual 
shear wave velocity along the well in the training phase 

- model development phase 
 

Fig. 8. Comparison diagram between the estimated 
shear wave velocity of the MLP method and the actual 
shear wave velocity along the well in the test phase - 

model development phase 
 

4.3. hybrid network MLP-PSO 
The architecture of this network is like the 

multi-layer perceptron network, the three middle 
layers were designed with 9, 11, and 12 neurons 
respectively. This hybrid network has two other 
effective parameters: the number of particles and 
maximum repetition. The number of particles was 

assigned to 50 particles and the maximum number 
of repetitions of particle swarm training was 
assigned to 120 repetitions. In this part, like the 
previous stage, the hybrid network was performed 
20 times, and the maximum and minimum values 
of the mean squared errors of the test and training 
stages were extracted from the tables related to all 
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twenty stages and subtracted from each other.    
Fig. 9 shows the correlation coefficient between 
the actual and predicted shear wave velocity in the 
two stages of training and testing. Fig. 10 and    
Fig. 11 Comparison diagram between the 

estimated shear wave velocity of the MLP-PSO 
method and the actual shear wave velocity along 
the well in the training phase - model development 
phase. Comparison of test and training error 
values of this network are shown in Table 2.

 
Fig. 9. Correlation coefficient between real and estimated shear wave velocity in two parts of MLP-PSO network 

training and test in the model development phase 
 

  
Fig. 10. Comparison diagram between the estimated 
shear wave velocity of the MLP-PSO method and the 

actual shear wave velocity along the well in the training 
phase - development phase 

 

Fig. 11. Comparison diagram between the estimated 
shear wave velocity of the MLP-PSO method and the 
actual shear wave velocity along the well in the test 

phase - model development phase 
 

4.4. Hybrid network MLP-SSD 
In this network, the values of neurons and 

intermediate layers are selected by the user, and 
then the SSD algorithm is used to learn the 

network, by determining the values of the number 
of particles and the maximum number of 
repetitions, the network is performed and towards 
the best response and the error values and 
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correlation coefficients between the estimated and 
actual shear wave velocity are obtained. In this 
way, three intermediate layers with the number of 
neurons 9, 11, and 12 and the maximum repetition 
in the SSD training algorithm 120 times and 50 
particles were presented for this integrated 
network by trial-and-error method and comparing 
different situations. Fig. 12 shows the correlation 
coefficient between the actual and predicted shear 
wave velocity in the two stages of training and 
testing. Fig. 13 and Fig. 14 Comparison diagram 

between the estimated shear wave velocity of the 
MLP-SSD method and the actual shear wave 
velocity along the well in the training phase - 
model development phase. Since for each of the 
methods, the optimal variable values and the 
maximum number of repetitions of the network 
were implemented, the results reached the best 
answers and as a result, the error values obtained 
are very small and minor. Comparison of test and 
training error values of this network are shown in 
Table 2.

 
 

Fig. 12. The correlation coefficient between actual and estimated shear wave velocity in two parts of training   
(left image) and test (right image) of MLP-SSD network - model development phase 

 

  
Fig. 13. Comparison diagram between the estimated 
shear wave velocity of the MLP-SSD method and the 

actual shear wave velocity along the well in the training 
phase - model development phase 

 

Fig. 14. Comparison diagram between the estimated 
shear wave velocity of the MLP-SSD method and the 
actual shear wave velocity along the well in the test 

phase - model development phase 
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Table 2. Comparison of test and training error values of three neural networks: 
 MLP, MLP-PSO, and MLP-SSD 

Method Min RMSE 
tr 

Max RMSE 
tr 

Max RMSE 
tr-Min RMSE 

tr 

Min RMSE 
ts 

Max RMSE 
ts 

Max RMSE tr-
Min RMSE ts 

MLP 0.0524 0.0755 0.0221 0.0682 0.0821 0.0139 
MLP-PSO 0.0959 0.1854 0.0895 0.0927 0.2066 0.1139 
MLP-SSD 0.1026 0.1523 0.0497 0.0997 0.1614 0.0617 

5. Conclusion and Suggestions 
The results of the research in all stages 

related to the estimation of the shear wave speed 
and the validation of the methods are shown in 
Table 3. The most common way of evaluation is 
based on the lowest number of errors. So, if the 
basis of evaluation of the methods is based on the 
lowest amount of evaluation error, according to 
Table 3, the regression method is the best method 
among experimental methods with an error of 
about 8% in the estimation stage and 9% error in 
the validation stage. Based on this, the MLP 
method also has the lowest error value in the 
model development phase among the machine 
learning methods with an error of 6% in the 
estimation phase, but contrary to expectations, it 
is not able to estimate the shear wave velocity well 
in the validation phase and the growth It has 7% 
error and the error rate is 12%. On the other hand, 
the MLP-PSO method, which had an error of 
about 14% in the model development phase, has 
been reduced to about 5% in the validation phase 
with a significant increase in the estimation 
power. Among the new methods of artificial 
intelligence for estimation, if only one estimation 
or validation step is considered, the best 
estimation methods are MLP and MLP-PSO, 
respectively.  

On the other hand, according to Table 3, if 
the measurement is based on the correlation 
coefficient, the regression method is the best 
among the traditional methods with slight changes 
in both estimation and validation stages, 
respectively, with correlation coefficient values of 
0.8697 and 0.8464. Among the machine learning 
methods, the MLP method has the highest 
correlation coefficient value of 0.943 in the 
estimation phase, but this network has a 
significant drop in the correlation coefficient in 
the validation phase. This value is 0.535. Also, if 
the evaluation stages are changed, the MLP-PSO 
network has a correlation coefficient of 0.923 in 
the validation stage, which has the best correlation 
coefficient compared to all traditional and new 

methods, but the major flaw of this method is in 
evaluation based on the correlation coefficient, 
the value of the correlation coefficient of 0.788 in 
the main estimation stage and the huge difference 
of these values. 

The evaluation criteria of this research are 
based on the stability of estimation methods. In 
such a way that it is an accepted method that does 
not suffer gross errors in the training and testing 
phase when dealing with new data, small data, or 
massive data. In other words, the uniformity of 
network behavior is of great importance in 
estimating and solving various problems. In 
simple words, you should choose a method that 
has a reasonable error but with a small difference 
in the two steps of the main estimation and 
validation, and the correlation coefficients are 
close to each other. As can be seen in Table 3, the 
MLP-SSD method has an error of 12% in the 
estimation stage, and the determination 
coefficient of this stage is 0.746. In the validation 
stage, the error rate of this method is 11% and the 
coefficient of determination is 0.671. It is evident 
that the difference between these values is within 
a short interval. The stable behavior of this 
method refers to the behavior that originates from 
sinusoidal relationships. In this way, the particles 
move at a certain interval to reach convergence.  

Although it should be mentioned that the 
regression method also has the same features 
among the traditional methods, due to the 
mechanism of this method that was obtained for 
the data of this research, it also has good stability. 
However, since the importance of the results of 
this research does not only belong to this 
formation, and perhaps the need to use the MLP-
SSD method will be felt in other sciences as well, 
the chosen method is the MLP-SSD. Due to 
limitations in access to regional data and 
information preservation, it was not possible to 
check estimation methods in other fields and 
wells. In this way, for the better application of the 
chosen final method in other wells, the ability to 
generalize, and reliability in other wells, the 
degree of stability is the focus of this research.
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 Table 3. Summarizing the results and comparing methods in two stages of estimation and validation 

Estimation Stage Validation Stage 
Row Method R 𝑹𝑹𝟐𝟐 RMSE R 𝑹𝑹𝟐𝟐 RMSE 

1 Picket 0.8539 0.7292 0.1092 0.821 0.674 0.1302 

2 Castagna-
Greenberg 0.1572 0.0247 0.2069 0.8315 0.6914 0.1070 

3 Broocher 0.8698 0.7566 0.1150 0.1431 0.0205 0.2945 
4 Regression 0.8697 0.7565 0.0894 0.8464 0.7164 0.0918 
5 MLP 0.934 0.889 0.06445 0.535 0.286 0.1204 
6 MLP-PSO 0.788 0.620 0.14065 0.923 0.851 0.0509 
7 MLP-SSD 0.864 0.746 0.12745 0.819 0.671 0.11605 

Suggestions 
Since the available data of this research are 

very limited and are located at a certain depth of a 
well in Abteymour formation and the nature of 
this formation is limestone, it is suggested:  

1- By using the selected MLP-SSD method 
and obtaining the optimal number of 
particles, repetitions, the number of 
intermediate layers and neurons, if the 
information of petrophysical logs is 
available in other wells, from this 
method and in limestone, dolomite, and 
sand formations, and the presence of at 
least one well with information related to 
the DSI profile, can estimate the shear 
wave velocity in other wells of that field 
to obtain complete information about the 
mechanical properties of the formations.  

2- With the optimal use of this method, it is 
possible to estimate the required 
quantities for other projects in the oil 
industry and related sciences and reduce 
the possible exorbitant costs. 

3- The use of optimization algorithms to 
choose the appropriate structure, i.e. the 
number of hidden layers and the number 
of neurons in each layer, can lead to a 
better performance of the multilayer 
perceptron neural network in its simple 
or hybrid form. Therefore, it is suggested 
to determine the structure with an 
optimization algorithm in future studies. 

4- The use of deep neural networks in other 
fields of engineering sciences is 
increasing. Therefore, it is suggested to 
use this tool to estimate shear wave 
velocity from petrophysical logs. 

5- It is suggested to use other feature 
selection methods that are based on fit 
and cost functions (i.e. wrapper 
methods) which have shown better 
performance than the method used in this 
research.  

6- It is advisable to employ advanced 
machine learning techniques, such as the 
Kyoshin network (K-NET), or a hybrid 
approach combining various methods for 
achieving a more accurate determination 
of Shear Wave Velocity. This can result 
in a higher correlation coefficient and a 
reduced error value. 
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