ارزیابی بریک-آوت با معیار خرابی موگی-کولمب، به عنوان روشی برای تخمین تنش‌های برجا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی، دانشگاه زنجان، زنجان، ایران

چکیده

تعیین جهت و مقدار تنش‌های برجا به عنوان اساسی‌ترین پارامتر مورد نیاز برای ارزیابی پایداری دیواره گمانه بسیار با اهمیت هستند. یکی از روش‌ها برای تعیین جهت و مقدار تنش‌های برجا، پدیده‌ی بریک-آوت گمانه است. پدیده‌ی بریک-آوت گمانه که منجر به خرابی و ریزش جدار گمانه حفاری شده می‌شود، ناشی از افزایش تنش برشی به علت تمرکز تنش فشاری در پیرامون گمانه است. در این مقاله با تلفیق روابط تنش پیرامون گمانه بر پایه تئوری الاستیسیته با معیار خرابی موگی-کولمب عرض و عمق خرابی بدست آمد. سپس حداقل فشار سیال داخل گمانه برای جلوگیری از خرابی دیواره گمانه مورد ارزیابی قرار گرفت و همچنین تأثیر مشخصات فیزیکی مصالح، نسبت تنش‌های برجا و فشار سیال بر روی ابعاد بریک-آوت بررسی شد. در بخش دوم مقاله برای ماسه سنگ انتخابی215 تحلیل بریک- آوت برای مشخصات مکانیکی و تنش‌های برجای مختلف انجام شد. هدف این مقاله ارزیابی ارتباط بین عرض و عمق خرابی می‌باشد. ضریب همبستگی بین عرض و عمق خرابی با استفاده از رگرسیون ساده خطی R=0.74بدست آمد همچنین بر اساس روش برنامه ریزی بیان ژن (GEP) مقدار ضریب همبستگی R=0.82 نتیجه شد. این بدین معنی است که همبستگی متوسط تا زیادی بین این‌دو پارامتر وجود دارد و اگر قرار باشد مقادیر تنش برجای σ_h و σ_H را بر اساس هندسه بریک- آوت بدست آورد، با توجه به همبستگی بالای عرض و عمق خرابی فقط می‌توان یکی از این‌دو تنش را بدست آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Breakout by Mogi-Coulomb Failure Criterion as a Method for Estimating in situ Stresses

نویسندگان [English]

  • Ali Lakirouhani
  • Mohammad Bahrehdar
Civil Engineering Department, University of Zanjan
چکیده [English]

Determining the directions and the values of in-situ stresses is of great importance as the most fundamental parameter needed to evaluate the borehole wall's stability. One of the methods for determining the directions and values of in-situ stresses is the borehole breakout phenomenon, which is developed by an increase in shear stress due to the concentration of compressive stress around the borehole and leads to the failure and collapse of the drilled borehole wall. In the present article, the width and depth of the failure were obtained by combining the stress relations around the borehole based on the theory of elasticity and through the Mogi-Coulomb failure criterion. Then, the minimum fluid pressure inside the borehole was evaluated to prevent damage to the borehole wall, and the effect of physical properties of materials, in situ stress ratio, and fluid pressure on the breakout dimensions was investigated. In the second section of this article, 215 breakout analyzes for different mechanical properties and in situ stresses were carried out for the selected sandstone. The objective of the present study is to evaluate the relationship between the width and depth of failure. The correlation coefficient between the width and depth of failure was equal to R=0.74 using simple linear regression. Moreover, the correlation coefficient's value was calculated to be R=0.82 based on the gene expression programming (GEP) method. It means that there is a moderate to strong correlation between these two parameters, and if the values of in situ stresses σ_h, σ_H to be obtained based on the breakout geometry, only the value of one of these stresses can be obtained due to the high correlation between width and depth of failure.

کلیدواژه‌ها [English]

  • Mogi-Coulomb
  • Borehole breakout
  • Gene expression programming
  • width and depth of failure zone
  • In-situ stress
Aadnoy, B. and Looyeh, R. “Petroleum Rock Mechanics: Drilling Operations and Well Design”, (2th Edition), Elsevier Publication, New York, NY, USA (2010).
Amadei, B. and Stephansson, O. “Rock stress and its measurement”, (1th Edition), Chapman & Hall, London (1997).
Al-Ajmi, A.M. and Zimmerman, R.W. “Stability Analyses of Vertical Boreholes Using the Mogi-Coulomb Failure Criterion”, International Journal of Rock Mechanics and Mining Science. 43: 1200-1211, (2006).
Barton, C.A., Tesler, L.G. and Zoback, M.D., “Interactive Image Analysis of Borehole Televiewer Data”,Palaz I., Sengupta S.K. (eds) Automated Pattern Analysis in Petroleum Exploration, Springer, New York, NY (1992).
Barton, C .A., Zoback, M. D. (1988). In situ stress orientation and magnitude at the Fenton geothermal site, New Mexico, determined from wellbore breakouts. Geophysical Research Letters 15(5), 467-470.
Bell, J.S. and Gough, D.I. “Northeast-southwest compressive stress in Alberta: Evidence from oil wells”, Earth and Planet Sci. Let, Vol. 45, pp. 475-482 (1979).
Cai, M. “Practical estimates of tensile strength and Hoek–Brown Strength parameter mi of brittle rocks”, Rock Mech. Rock Eng, 43(2), 167–184 (2010).
Cerasi P., Papamichos E., Stenebraten J. F. “Quantitative sand-production prediction: Friction-dominated flow model”, SPE Latin American and Caribbean Petroleum Engineering Conference. Rio de Janeiro, Brazil. no.SPE94791 (2005).
Duan, K & Kwok, CY. “Evolution of stress-induced borehole breakout in inherently anisotropic rock: Insights from discrete element modeling” Journal of Geophysical Research: Solid Earth, vol. 121, no. 1, pp. 2361–2381 (2016).
Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Sharifi, A. “Gene expression programming to predict the discharge coefficient in rectangular side weirs”. Appl. Soft Comput. 35, 618–628 (2015)
Fairhurst, C., and N. G. W. Cook. “The phenomenon of rock splitting parallel to a free surface under compressive stress,” paper presented at First Congress, Int. Soc. of Rock Mech., Lisbon, Portugal (1964).
Griffith, A. A. “The phenomena of rupture and flow insolids,” J Philos Trans R Soc Lond; 221:163–198 (1921).
Geosoft, "GeneXproTools Help," 19 Feburary 2014. [Online]. Available:
Haimson, B.C., Herrick, C.G. “Borehole breakouts and in situ stress”, Proc. 12th Annual Energy-Sources Technology Conf. and Exhib., Drilling Symp., 22, 17–22, Houston, TX (1989).
Haimson, B. and Lee, H.. “Borehole breakouts and compaction bands in two high-porosity sandstones”, Int. J. Rock Mech. Min. Sci, 41(2), 287-301 (2004).
Haimson, B.C. “Micromechanisms of borehole instability leading to breakouts in rocks”, Int. J. Rock. Mech. Min.Sci., 44(2), 157-173 (2007).
Haimson, B.C., Kovacich, J. “Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts”, Engineering Geology, Vol. 69, No. 3-4, pp. 219-231 (2003).
Herrick, C.G. & Haimson, B.C. “ Modeling of episodic failure leading to borehole breakouts in Alabama limesonte”, In P. Nelson and S. Laubach (eds), Rock Mechanics; Models and Measurements, Austin, TX: 217–224, Rotterdam: Balkema (1994).
Hoek, E., Carranza-Torres, C.T. and Corkum, B. “Hoek-Brown Failure Criterion— 2002 Edition,” Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, 7-10 July 2002, 267-273 (2003).
Jaeger JC, Cook NG W,Zimmerman RW. Fundamentals of Rock Mechanics. 4th ed., Oxford: Black well Publishing. (2007).
irsch G (1898) Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereins Deutscher Ingenieure 42(29):797–807.
Lee, M., Haimson, B. “Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr, Vol. 30, No. 7, pp. 1039-1045 (1993).
Leeman, ER. “The treatment of stress in rock: I. the rock stress measurement: II. Borehole rock stress measuring instrument: III. The results of some rock stress investigations”, J S Afr Inst Min Met; 65:4584-254, 114 (1964).
Lee. H. Moon. T, and. Haimson B. C. “Borehole breakouts induced in Arkosic sandstones and a discrete element analysis,” Rock Mechanics and Rock Engineering, vol. 49, no. 4, pp. 1369–1388 (2016).
Lin H; Oh J; Canbulat I; Stacey TR. “Experimental and Analytical Investigations of the Effect of Hole Size on Borehole Breakout Geometries for Estimation of In Situ Stresses”, Rock Mechanics and Rock Engineering, doi.org/10.1007/s00603-019-01944-z (2019).
Mastin, L.G. Development of borehole breakouts in sandstone. MSc thesis, Stanford University (1984).
Martin, C.D., Martino, J.B. and Dzik, E.J. Comparison of borehole breakouts from laboratory and field tests, in Proc. Eurock '94: Int. Symp. On Rock Mech. in Petrol. Eng., Delft, Balkema, Rotterdam, 183-90 (1994).
Rahmati, H., Nouri, A., Chan, D. and Vaziri, H. “Simulation of Drilling-Induced Compaction Bands Using Discrete Element Method”, International Journal of Numerical and Analytical Methods in Geomechanics, Vol. 38, No. 1: 37-50, January (2014).
Sahara, David P., Schoenball, Martin. Gerolymatou, Eleni and Kohl, Thomas, “Analysis of borehole breakout development using continuum damage mechanics”, International Journal of Rock Mechanics and Mining Sciences 97 134 (2017).
Song, I. “Borehole breakout and coredisking in westerly granite:mechanism of formation and relationship to in situ stress”,Ph.D. thesis, University of Wisconsin, p.201. (1998).
Song, I. and Haimson, B. C., “Polyaxial Strength Criteria and their Use in Estimating in situ Stress Magnitudes from Borehole Breakout Dimensions”, Intl. J. Rock Mech. and Mining Sci, 34, 3–4,116,(1997)
Van den Hoek, PJ. “Prediction of different types of cavity failure using bifurcation theory”, Rock mechanics in the national interest. In: Proceedings of 38th rock mechanical symposium, AA Balkema Rotterdam (2001).
Zoback, M.D., Moos, L., Mastin, L.G. Anderson, R.N. “Wellbore breakouts and in situ stress”, J. Geophys. Res., Vol. 90, pp. 5523-5538 (1985).
Zoback, M.D., et al., “Determination of stress orientation and magnitude in deep wells”. Int. J. Rock Mech. and Min. Sci. and Geomech. Abstr., Vol. 40, pp. 1049-1076, July 11, (2003).
Zheng, Z., Kemeny, J., Cook, N.G.W. “Analysis of borehole breakouts”, Journal of Geophysical Research, Vol. 94, No. B6, pp. 7171-7182 (1989).
Zhang H, Yin S, Aadnoy BS. “Finite‐element modeling of borehole breakouts for in situ stress determination,” Int J Geomech; 18 (12). 04018174 (2018).