طراحی و بهینه‌سازی شکاف هیدرولیکی با ترکیب روش UFD و مدل دو‌بعدی KGD در یک مخزن فرضی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نفت، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف

2 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف

چکیده

ایجاد شکاف هیدرولیکی یکی از مهم‌ترین روش‌هایی است که امروزه برای افزایش تولید نفت به خصوص در میادینی با تراوایی پایین استفاده می‌شود. مدل‌های مختلف دوبعدی و سه‌بعدی برای طراحی شکاف هیدرولیکی وجود دارند که در این مقاله با ترکیب روش Unified Fracture Design و مدل دوبعدی Khristianovich-Geertsma De klerk یک طراحی بهینه شکاف هیدرولیکی معرفی شده است.
برای این طراحی، با حدس مقدار تراوایی شکاف در وزن پروپانت‌های مختلف، پارامترهای مورد نیاز برای طراحی شکاف هیدرولیکی در آن وزن پروپانت‌ها به دست می‌آیند و سپس مقدار تراوایی شکاف با استفاده از نمودارهایی که غلظت پروپانت در شکاف و فشار بسته شدن شکاف و هدایت‌پذیری شکاف را به هم ربط می‌دهند، به‌روزرسانی می‌شود که این نمودارها برای پروپانت‌های مختلف، متفاوت هستند که در این مقاله از نمودار مرتبط با پروپانت شن با سایز مش 50/30 استفاده شده است
پس از محاسبه‌ی تمامی پارامترهای مورد نیاز در وزن پروپانت‌های مختلف، لازم است تا مناسب‌ترین وزن پروپانت انتخاب شود که از دو روش متفاوت می‌توان برای این کار استفاده کرد؛ در روش اول با توجه به مقادیر پارامترهایی مانند نرخ تزریق، اثر پوسته، فشار تزریق در سطح، بازدهی عملیات شکاف هیدرولیکی و سایر پارامترهای مورد نظر، وزن پروپانت مدنظر انتخاب می‌شود و در روش دیگر، وزن پروپانتِ متناظر با نرخ تزریق مدنظر بدست آورده می‌شود و طراحی شکاف هیدرولیکی بر اساس نرخ تزریق مدنظر انجام می‌شود. در انتها برای اطمینان از صحت نتایج به دست آمده توسط این روش، یک حساسیت‌سنجی نیز انجام شده است که معتبر بودن این روش را اثبات می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Design and optimization of hydraulic fracturing by combination of UFD method and two-dimensional KGD model in a hypothetical reservoir

نویسندگان [English]

  • Saeid Jamshidi 1
  • Ali Zalaki Nezhad 2
1 Sharif University of technology
2 Department of Chemical and Petroleum Engineering, Sharif University of technology
چکیده [English]

Hydraulic fracturing is one of the most important methods that has been used for several years to increase production, especially in low permeability fields. There are many two-dimensional and three-dimensional models to design hydraulic fracturing, which in this paper by using a combination of the Unified Fracture Design method and two-dimensional Khristianovich-Geertsma De klerk model, an optimum hydraulic fracturing design is modeled.
In this paper, by making an initial guess for the amount of fracture permeability in different proppant mass, the parameters required to design hydraulic fracturing are obtained, and then by using graphs that connect fracture conductivity, fracture closure, and proppant concentration in fracture, fracture permeability will be updated. These graphs are different for different proppant types where in this article, the graph related to sand with mesh size 30/50 has been used.
After calculating all the required parameters in the different proppant masses, is necessary to select the most suitable proppant mass, which two different ways can be used; in the first method, according to the values of some parameters such as injection rate, skin effect, surface injection pressure, efficiency of hydraulic fracturing operation and other parameters, the desired proppant mass is selected and in the second method the proppant mass corresponding to the desired injection rate is obtained and the design of the hydraulic fracturing is based on the intended injection rate. Finally, to ensure the accuracy of the results obtained by this method, a sensitivity test is performed which proves the validity of this method.

کلیدواژه‌ها [English]

  • well stimulation
  • KGD model
  • UFD method
  • proppant mass
  • hydraulic fracturing
Al-Attar, Hazim H., and Farah A. Barkhad. "A Review OF UNCONVENTIONAL NATURAL GAS RESOURCES." Journal of Nature Science and Sustainable Technology ISSN 1933 (2018): 0324 .
Martin, T., & Economides, M. (2007). Modern Fracturing Enhancing Natural Gas Production. Virginia Gardens, FL: ET Publishing .
Economides, M. J. (2013). Petroleum production systems. Pearson Education .
Cipolla, C. L., Warpinski, N. R., Mayerhofer, M. J., Lolon, E., & Vincent, M. C. (2008, January). The relationship between fracture complexity, reservoir properties, and fracture treatment design. In SPE annual technical conference and exhibition. Society of Petroleum Engineers .
Warpinski, N. R. (2009, January). Stress amplification and arch dimensions in proppant beds deposited by waterfracs. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers .
Wang, W., Olson, J. E., Prodanović, M., & Schultz, R. A. (2018). Interaction between cemented natural fractures and hydraulic fractures assessed by experiments and numerical simulations. Journal of Petroleum Science and Engineering, 167, 506-516 .
Bunger, A. P., Zhang, X., & Jeffrey, R. G. (2012). Parameters affecting the interaction among closely spaced hydraulic fractures. Spe Journal, 17(01), 292-306 .
Lin, J., & Zhu, D. (2014). Modeling well performance for fractured horizontal gas wells. Journal of Natural Gas Science and Engineering, 18, 180-193 .
Nolte, K. G., & Economides, M. J. (1991). Fracture design and validation with uncertainty and model limitations. Journal of Petroleum Technology, 43(09), 1-147.
Song, B., Economides, M. J., & Ehlig-Economides, C. A. (2011, January). Design of multiple transverse fracture horizontal wells in shale gas reservoirs. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
Liu, S., & Valkó, P. P. (2018). A rigorous hydraulic-fracture equilibrium-height model for multilayer formations. SPE Production & Operations, 33(02), 214-234 .
Rahim, Z., & Holditch, S. A. (1995). Using a three-dimensional concept in a two-dimensional model to predict accurate hydraulic fracture dimensions. Journal of Petroleum Science and Engineering, 13(1), 15-27 .
Weng, X., Kresse, O., Cohen, C. E., Wu, R., & Gu, H. (2011, January). Modeling of hydraulic fracture network propagation in a naturally fractured formation. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
Garavand, A., & Podgornov, V. M. (2018). Hydraulic fracture optimization by using a modified Pseudo-3D model in multi-layered reservoirs. Journal of Natural Gas Geoscience, 3(4), 233-242 .
Al-Attar, H., Alshadafan, H., Al Kaabi, M., Al Hassani, A., & Al Mheiri, S. (2020). Integrated optimum design of hydraulic fracturing for tight hydrocarbon-bearing reservoirs. Journal of Petroleum Exploration and Production Technology, 10 ( 8 .)
Hydraulic Fracturing in Unconventional Reservoirs. (2019). In Hydraulic Fracturing in Unconventional Reservoirs.
Huang, J., Perez, O., Huang, T., Safari, R., & Fragachan, F. E. (2018). Using engineered low viscosity fluid in hydraulic fracturing to enhance proppant placement. Society of Petroleum Engineers - SPE International Hydraulic Fracturing Technology Conference and Exhibition 2018, IHFT 2018.
Ai, K., Duan, L., Gao, H., & Jia, G. (2018). Hydraulic fracturing treatment optimization for low permeability reservoirs based on unified fracture design. Energies, 11 ( 7 .)
عبدالهی پور، ابوالفضل، سلطانیان، حمید، فاتحیم رجی، محمد و مرتضوی، سید علیرضا. طراحی میدانی عملیات شکست هیدرولیکی در سازند ماسه سنگی (مطالعه موردی: چاه قائم در میدان گازی هیوگوتون آمریکا). نشریه علمی پژوهشی ژئومکانیک نفت, 1(2), 1-21. 
احمدی، رضا و سمایی، آناهیتا، 1396 ، تعیین هندسه شکاف در عملیات شکاف هیدرولیکی با استفاده از مدل KGD ، مطالعه موردی بر روی یک میدان نفتی در جنوب غرب ایران، چهارمین همایش بین المللی نفت، گاز و پتروشیمی، تهران