مدل سازی عددی سه بعدی اثر تنش برجا بر پنجره وزن گل حفاری حوضه رسوبی زاگرس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه استخراج، دانشکده‌ی مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

2 گروه مهندسی نفت، دانشکده مهندسی نفت و پتروشیمی، دانشگاه حکیم سبزواری، سبزوار، ایران

3 گروه ژئومکانیک نفت، دانشکده مهندسی معدن، دانشگاه تهران

چکیده

امروزه بررسی عوامل مؤثر بر پایداری چاه از آن جهت که در وقت و هزینه‌های مربوط به صنعت نفت و گاز صرفه جویی خواهند نمود اهمیت فراوانی پیدا کرده‌اند. در بررسی پایداری چاه‌های نفت و گاز عوامل مختلفی از جمله پارامترهای الاستیک، تنش‌های برجا و فشار منفذی تاثیرگذار می‌باشند در نتیجه شناخت و محاسبه این پارامترها در تحلیل پایداری چاه‌ها کمک شایانی خواهند نمود. در این پژوهش سعی شده است، تا پایداری چاه شماره 2 زیره واقع در جنوب ایران مورد بررسی قرار بگیرد. اولین مرحله جهت بررسی پایداری چاه تعیین مدل ژئومکانیکی می‌باشد و در نهایت هر کدام از این پارامترها جهت ساخت مدل ژئومکانیکی به کمک روابط تجربی تعیین شد. پس از تعیین مدل ژئومکانیکی با به‌کارگیری معیار شکست‌های موهر-کلمب و موگی-کلمب پنجره گل حفاری تعیین شد که در نهایت معیار شکست موگی-کلمب نتایج قابل قبول تری ارائه نمود و پنجره گل به‌دست آمده به کمک معیارهای موهر-کلمب و موگی-کلمب به‌ترتیب مقدار(pcf) 76.99– 128.17 و 67.56 - 128.17 (pcf) می‌باشد. همچنین به کمک استفاده از نرم افزار عددی آباکوس و با استفاده از معیار موهر-کلمب پایداری چاه بررسی و با توجه به نتایج روش‌های عددی و تحلیلی، چاه در شرایط کاملاً پایدار قرار دارد. در نهایت به کمک مدل-سازی نسبت تنش‌های برجا مختلف تأثیر تنش‌های برجا بر پایداری، بررسی و نتایج به این صورت بود که هر چه نسبت تنش از همسانگرد به تنش ناهمسانگرد تغییر کند بازه پنجره گل محدودتر می‌شود تا اینکه در یک نقطه چاه به‌ طور کامل دچار ناپایداری خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

3D Numerical modeling of the effect of in-situ stress ratio on mud weight window in the drilling of the Zagros sedimentary basin

نویسندگان [English]

  • Mohammad Reza Aghakhani Emamqeysi 1
  • Mohammad Fatehi Marji 1
  • Abbas Hashemizadeh 2
  • Manouchehr Sanei 1
  • Abolfazl Abdollahipour 3
1 Mine Exploitation Engineering Department, Faculty of Mining and Metallurgy, Institutive of Engineering, Yazd University, Yazd, Iran
2 Petroleum Engineering Department, Petroleum and Petrochemical Engineering School, Hakim Sabzevari University, Sabzevar, Iran
3 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

The study of factors affecting wellbore stability has become very important in the oil and gas industry because they will save time and costs. In studying the stability of oil and gas wells, different factors such as mechanical properties, in-situ stresses, and pore pressure can be used. Consequently, knowing and calculating these parameters will be helpful in analyzing the wellbore stability. This study evaluated the effects of changing stresses on the wellbore stability and drilling mud weight window using a ratio of different stresses for the first time in one of the wells of the Zireh gas field, located in the southwest of Iran. Due to the lack of laboratory data, each of the parameters of the geomechanical model were determined by empirical correlation. Using Mohr-Coulomb and Mogi-Coulomb criteria, the drilling mud weight window was determined to be 76.99-128.17 (pcf) and 67.56-128.17 (pcf), respectively; however, Mogi-Coulomb provided better results. The wellbore stability is also investigated by using 3D numerical modeling using ABAQUS software and the Mohr-Coulomb criterion. According to the results of the numerical and analytical methods, the well is completely stable. Ultimately, five different in-situ stress ratios were examined to determine how in-situ stress distribution affected wellbore stability. According to the results, the mud weight window range decreases as the stress changes from an isotropic to an anisotropic state, indicating wellbore instability.

کلیدواژه‌ها [English]

  • Geomechanical model
  • Wellbore stability
  • In-situ stress
  • Mohr-Coulomb
  • Mogi-coulomb
[1] Al-Ajmi A. M., Zimmerman R. W. (2009). A new well path optimization model for increased mechanical borehole stability. Journal of Petroleum Science and Engineering;69(1-2):53-62.
[2] Aadnoy B., Chenevert M. (1987). Stability of highly inclined boreholes (includes associated papers 18596 and 18736). SPE Drilling Engineering;2(04):364-74.
[3] Brody M., Kjorholt H., editors. The initiation of drilling-induced tensile fractures and their use for the estimation of stress magnitude. Vail Rocks 1999, The 37th US Symposium on Rock Mechanics (USRMS); 1999: OnePetro.
[4] Zoback M., Barton C., Brudy M., Castillo D., Finkbeiner T., Grollimund B., et al. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences;40(7-8):1049-76.
[5] Vernik L., Zoback M. D. (1992). Estimation of maximum horizontal principal stress magnitude from stress‐induced well bore breakouts in the Cajon Pass scientific research borehole. Journal of Geophysical Research: Solid Earth;97(B4):5109-19.
[6] Zhou S. (1994). A program to model the initial shape and extent of borehole breakout. Computers & Geosciences;20(7-8):1143-60.
[7] Song I., Haimson B. C. (1997). Polyaxial strength criteria and their use in estimating in situ stress magnitudes from borehole breakout dimensions. International Journal of Rock Mechanics and Mining Sciences;34(3-4):116. e1-. e16.
[8] Ewy R. T. (1999). Wellbore-stability predictions by use of a modified Lade criterion. SPE Drilling & Completion;14(02):85-91.
[9] Fjar E., Ruistuen H. (2002). Chemistry and Physics of Minerals and Rocks/Volcanology-ECV 3-Impact of the intermediate principal stress on the strength of heterogeneous rock (DOI 10. 1029/2001 JB000277). Journal of Geophysical Research-Part B-Solid Earth;107(2):1.
[10] Al-Ajmi A. M., Zimmerman R. W. (2006). Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion. International Journal of Rock Mechanics and Mining Sciences;43(8):1200-11.
[11] Das B., Chatterjee R. (2017). Wellbore stability analysis and prediction of minimum mud weight for few wells in Krishna-Godavari Basin, India. International Journal of Rock Mechanics and Mining Sciences;93:30-7.
[12] Najibi A. R., Ghafoori M., Lashkaripour G. R., Asef M. R. (2017). Reservoir geomechanical modeling: In-situ stress, pore pressure, and mud design. Journal of Petroleum Science and Engineering;151:31-9.
[13] Yousefian H., Fatehi Marji M., Soltanian H., Abdollahipour A., Pourmazaheri Y. (2018). Stability analysis of a vertical wellbore in one of Iran's South-West oilfields using the plastic zone concept. Oil Geomechanic;2(1):18-40.
[14] Behnam N., Hosseini M., Shahbazi S. (2020). A criterion for estimating the minimum drilling mud pressure to prevent shear failure in oil wells. Geotechnical and Geological Engineering;38(1):227-36.
[15] Ezati M., Azizzadeh M., Riahi M. A., Fattahpour V., Honarmand J. (2020). Wellbore stability analysis using integrated geomechanical modeling: a case study from the Sarvak reservoir in one of the SW Iranian oil fields. Arabian Journal of Geosciences;13(4):149.
[16] Allawi R. H., Al-Jawad M. S. (2021). Wellbore instability management using geomechanical modeling and wellbore stability analysis for Zubair shale formation in Southern Iraq. Journal of Petroleum Exploration and Production Technology;11(11):4047-62.
[17] Hoseinpour M., Riahi M. A. (2022). Determination of the mud weight window, optimum drilling trajectory, and wellbore stability using geomechanical parameters in one of the Iranian hydrocarbon reservoirs. Journal of Petroleum Exploration and Production Technology; 12(1):63-82.
[18] Heydari M., Aghakhani Emamqeysi M. R., Sanei M. (2022). Finite element analysis of wellbore stability and optimum drilling direction and applying NYZA method for a safe mud weight window. Journal of Analytical and Numerical Methods in Mining Engineering; 11(29):67-76.
[19] Rezavand, N., Jahani, D., & Asilian, H. (2016). Analysis of Sedimentary Environment and Sequence Stratigraphy of Middle-Late Permian Sediments in Coastal Fars, Iran (Zireh Gas Field, Well ZH-A). Open Journal of Geology, 6(12), 1539.
[20] Fjar E., Holt R. M., Raaen A., Horsrud P. (2008). Petroleum related rock mechanics. Elsevier.
[21] Ameen M. S., Smart B. G., Somerville J. M., Hammilton S., Naji N. A. (2009). Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology;26(4):430-44.
[22] Seyedsajadi S., Aghighi M. A. (2015). Construction and Analysis of a Geomechanical Model for Bangestan Reservoir in Koopal Field. Iranian Journal of Mining Engineering;10(26):21-34.
[23] Asquith G. B., Krygowski D., Gibson C. R. (2004). Basic well log analysis. American Association of Petroleum Geologists Tulsa.
[24] Jaeger J. C., Cook N. G., Zimmerman R. (2009). Fundamentals of rock mechanics. John Wiley & Sons.
[25] Gardner G., Gardner L., Gregory A. (1974). Formation velocity and density—The diagnostic basics for stratigraphic traps. Geophysics;39(6):770-80.
[26] Hottmann C., Johnson R. (1965). Estimation of formation pressures from log-derived shale properties. Journal of Petroleum Technology;17(06):717-22.
[27] Matthews W. (1967). How to predict formation pressure and fracture gradient from electric and sonic logs. Oil and Gas.
[28] Eaton B. A., editor The equation for geopressure prediction from well logs. Fall meeting of the Society of Petroleum Engineers of AIME; 1975: OnePetro.
[29] Zhang J. (2011). Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth-Science Reviews;108(1-2):50-63.
[30] Azadpour M., Manaman N. S., Kadkhodaie-Ilkhchi A., Sedghipour M.-R. (2015). Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran. Journal of Petroleum Science and Engineering;128:15-23.
[31] Jaeger J., Cook N. (1979). Fundamentals of rock mechanics. Barnes and Noble. Methuen, London, New York, 593p.
[32] Kidambi T., Kumar G. S. (2016). Mechanical earth modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. Journal of Petroleum Science and Engineering;141:38-51.
[33] Zoback M. D. (2010). Reservoir Geomechanics. Cambridge University Press.
[34] Mohr O. (1900). Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des Vereins Deutscher Ingenieure;46(1524-1530):1572-7.
[35] Mogi K. (1971). Effect of the triaxial stress system on the failure of dolomite and limestone. Tectonophysics;11(2):111-27.
[36] Logan D. L. (2011). A First Course in the Finite Element Method. Cengage Learning.