مدل‌سازی ژئومکانیکی و بررسی یکپارچگی پوش سنگ برای یکی از میدان‌های بزرگ کربناته جنوب غربی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکده مهندسی معدن دانشگاه صنعتی سهند

2 عضو هیات علمی دانشکده مهندسی معدن دانشگاه صنعتی سهند

3 عضو هیئت علمی بخش مهندسی نفت - دانشگاه صنعت نفت

4 عضو گروه مهندسی نفت، مهندسی دریا و خدمات چاه (SLD)، تهران، ایران

چکیده

مدل‌سازی و شبیه‌سازی ژئومکانیکی برای تعیین دقیق اثرات ترکیبی سناریوهای تولید-تزریق هیدروکربن و تغییرات در خواص سنگ به دلیل اثرات ژئومکانیکی معرفی شده‌اند. فشار منافذ و حالت تنش در مراحل تولید و تزریق متفاوت است. فشار منفذی و حالت تنش در مراحل تولید و تزریق تغییر می کنند. این تغییرات به طور قابل توجهی بر یکپارچگی مخزن و پوش سنگ، فعال شدن مجدد گسل ها، تراکم سازند و بالا آمدگی آن، پایداری چاه تأثیر می گذارد. بنابراین، تخمین دقیق فشار منفذی برای حفظ شرایط بهینه در طول عملیات تزریق و تولید ضروری می باشد. مجموعه‌ای ازاطلاعات شامل آزمایش‌های مکانیک سنگ، نمودارهای پتروفیزیکی، داده‌های فشار سازندی، لاگ های تصویری، آزمایش LOT، گزارشات حفاری و مطالعات زمین‌شناسی منطقه‌ای در این مطالعه استفاده گردید. در این راستا، یک مدل جریان ژئومکانیکی-سیال جفت شده برای ارزیابی یکپارچگی پوش سنگ در طول سناریوهای تزریق-تولید ساخته شد. مراحل بررسی عبارتند از: بررسی کیفیت اطلاعات، مدل سازی مکانیکی یک بعدی، مدل سازی سه بعدی خواص مکانیکی سنگ و شبیه سازی ژئومکانیکی چهار بعدی با استفاده از روش کوپلینگ یک طرفه. نتایج این مطالعه نشان داد که درتمام زمان های سناریو تولید و تزریق، پوش سنگ پایدار بوده است و از آنجایی که فاصله زیادی بین دایره موهر وپوش آن وجود دارد، پوش سنگ دچارگسیختگی نخواهد شد. همچنین به دلیل نفوذپذیری کم، هیچ ارتباطی بین فضاهای منفذی پوش سنگ وجود ندارد. بنابراین، این امر موجب منجر به نادیده گرفتن تغییر در وضعیت تنش به دلیل تغییرات در فشار مخزن می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Geomechanical modelling and cap-rock integrity of one of the southwest Iranian giant carbonate oil field

نویسندگان [English]

  • Narges Saadatnia 1
  • Yousef Sharghi 2
  • Jamshid Moghadasi 3
  • Mohsen Ezati 4
1 PhD student; Faculty of Mining Eng., Sahand University of Technology, Tbriz,, Iran
2 Faculty member, , Mining Engineering Department,, Sahand University of Technology,
3 Ahwaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahwaz, IRAN
4 Petroleum Engineering Department, SeaLand Engineering and Well Services (SLD), Tehran, Iran
چکیده [English]

Geomechanical modeling and simulation are introduced to accurately determine the combined effects of hydrocarbon production-injection scenarios and changes in rock properties due to geomechanical effects. Pore pressure and stress states vary during production and injection steps. These variations considerably affect reservoir and cap-rock integrity, faults reactivation, formation compaction and uplifting, and wellbore stability. Therefore, accurate pore pressure estimation is essential to maintain optimal conditions during injection and production operations. A series of data, including rock mechanical test data, well logs data, formation dynamic tester data, image logs data, leak-off tests (LOTs), drilling events, and regional geological studies were used in this work. In this study, a coupled geomechanical-fluid flow model was constructed to evaluate the cap-rock integrity during the injection-production scenario. The steps of the investigation are data audit, 1-D mechanical modeling (MEMs), 3D rock mechanical properties modeling, and 4D geomechanical simulation using a one-way coupling method. The results showed that throughout the production and injection scenario, the cap-rock was stable. Since there is a long distance between Mohr's circle and the envelope, the cap-rock will not fail. Due to the low permeability of the cap-rock, there is no connection between its pore spaces, which leads to ignoring the variation in stress state due to variations in reservoir pressure.

کلیدواژه‌ها [English]

  • Pore pressure
  • Rock mechanical model
  • 4-D Geomechanical modeling
  • One-way coupling
  • Cap-rock integrity
[1] Deflandre, J. P., Estublier, A., Baroni, A., Fornel, A., Clochard, V., & Delépine, N. (2013). Assessing field pressure and plume migration in CO2 storages: application of case-specific workflows at in Salah and Sleipner. Energy Procedia, 37, 3554-3564. ‏
[2] Zhou, X., & Burbey, T. J. (2014). Distinguishing fluid injection induced ground deformation caused by fracture pressurization from porous medium pressurization. Journal of Petroleum Science and Engineering, 121, 174-179. ‏
[3] Selvadurai, A. P. S., & Kim, J. (2016). Poromechanical behaviour of a surficial geological barrier during fluid injection into an underlying poroelastic storage formation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2187), 20150418. ‏
[4] Ezati, M., Azizzadeh, M., Riahi, M. A., Fattahpour, V., & Honarmand, J. (2020). Wellbore stability analysis using integrated geomechanical modeling: a case study from the Sarvak reservoir in one of the SW Iranian oil fields. Arabian Journal of Geosciences, 13(4), 1-19. ‏
[5] Chan, A. W., & Zoback, M. D. (2002, October). Deformation analysis in reservoir space (DARS): a simple formalism for prediction of reservoir deformation with depletion. In SPE/ISRM Rock Mechanics Conference. OnePetro. ‏
[6] Zivar, D., Foroozesh, J., Pourafshary, P., & Salmanpour, S. (2019). Stress dependency of permeability, porosity and flow channels in anhydrite and carbonate rocks. Journal of Natural Gas Science and Engineering, 70, 102949. ‏
[7] Rutqvist, J., Cappa, F., Rinaldi, A. P., & Godano, M. (2014). Modeling of induced seismicity and ground vibrations associated with geologic CO2 storage, and assessing their effects on surface structures and human perception. International Journal of Greenhouse Gas Control, 24, 64-77. ‏
[8] Michael, K., Avijegon, A., Ricard, L., Strand, J., Freifeld, B., Woitt, M., ... & Geeves, D. (2018). The South West Hub In-Situ Laboratory–a facility for CO2 injection testing and monitoring in a fault zone. ‏
[9] Song, J., & Zhang, D. (2013). Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environmental science & technology, 47(1), 9-22. ‏
[10] Streit, J. E., & Hillis, R. R. (2004). Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29(9-10), 1445-1456. ‏
[11] Bond, C. E., Wightman, R., & Ringrose, P. S. (2013). The influence of fracture anisotropy on CO2 flow. Geophysical Research Letters, 40(7), 1284-1289. ‏
[12] Heffer, K. J., Koutsabeloulis, N. C., & Wong, S. K. (1994, August). Coupled geomechanical, thermal and fluid flow modelling as an aid to improving waterflood sweep efficiency. In Rock mechanics in petroleum engineering. OnePetro. ‏
[13] Fredrich, J. T., Arguello, J. G., Thorne, B. J., Wawersik, W. R., Deitrick, G. L., De Rouffignac, E. P., ... & Bruno, M. S. (1996, October). Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge Diatomite. In SPE annual technical conference and exhibition. OnePetro. ‏
[14] Fredrick, J. T., Deitrick, G. L., Arguello, J. G., & DeRouffignac, E. P. (1998, July). Reservoir compaction, surface subsidence, and casing damage: a geomechanics approach to mitigation and reservoir management. In SPE/ISRM rock mechanics in petroleum engineering. OnePetro. ‏
[14] Settari, A., Sullivan, R.B., Walters, D.A., Wawrzynek, P. A., 2002. 3D analysis and prediction of microseismicity in fracturing by coupled geomechanical modeling. In SPE gas technology symposium. OnePetro.
[15] Sayers, C. M., Den Boer, L., Lee, D. W., Hooyman, P. J., & Lawrence, R. P. (2006, August). Predicting reservoir compaction and casing deformation in deepwater turbidites using a 3D mechanical earth model. In International oil conference and exhibition in Mexico. OnePetro. ‏
[16] Qiu, K., Yamamoto, K., Birchwood, R. A., Chen, Y. R., Wu, C., Tan, C. P., & Singh, V. (2012, April). Evaluation of fault re-activation potential during offshore methane hydrate production in Nankai Trough, Japan. In Offshore technology conference. OnePetro.‏.
[17] Qiu, K., Yamamoto, K., Birchwood, R., & Chen, Y. (2015). Well-integrity evaluation for methane-hydrate production in the deepwater Nankai Trough. SPE drilling & completion, 30(01), 52-67. ‏
[18] Correa, A. C. F., Newman, R. B., Naveira, V. P., de Souza, A. L. S., Araujo, T., da Silva, A. A. C., ... & Meurer, G. B. (2013, October). Integrated modeling for 3D geomechanics and coupled simulation of fractured carbonate reservoir. In Otc Brasil. OnePetro. ‏
[19] Yang, X., Pan, Y., Fan, W., Huang, Y., Zhang, Y., Wang, L., ... & Shan, F. (2018). Case study: 4D coupled reservoir/geomechanics simulation of a high-pressure/high-temperature naturally fractured reservoir. SPE Journal, 23(05), 1518-1538. ‏
[20] Ahmed, B. I., & Al-Jawad, M. S. (2020). Geomechanical modelling and two-way coupling simulation for carbonate gas reservoir. Journal of Petroleum Exploration and Production Technology, 10(8), 3619-3648. ‏
[21] Kim, J. (2010). Sequential methods for coupled geomechanics and multiphase flow. Stanford University. ‏
[22] Mikelić, A., Wang, B., & Wheeler, M. F. (2014). Numerical convergence study of iterative coupling for coupled flow and geomechanics. Computational Geosciences, 18(3), 325-341. ‏
[23] Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of Science, 304(1), 1-20.
[24] FALCON, N. L. (1961). Major earth-flexuring in the Zagros Mountains of south-west Iran. Quarterly Journal of the Geological Society, 117(1-4), 367-376. ‏
[25] Motiei, H. (1993). Geology of Iran; Zagros Stratigraphy. Geological Society of Iran Publications. ‏
[26] Darvishzadeh, A. (2009). Geology of Iran: stratigraphy, tectonic, metamorphism, and magmatism. Amir kabir, Tehran. ‏
[27] James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG bulletin, 49(12), 2182-2245. ‏
[28] Nairn, A. E. M., & Alsharhan, A. S. (1997). Sedimentary basins and petroleum geology of the Middle East. Elsevier.
[29] Fjaer, E., Holt, R. M., Horsrud, P., & Raaen, A. M. (2008). Petroleum related rock mechanics. Elsevier. ‏
[30] Zoback, M. D. (2007). Reservoir Geomechanics/Cambridge, New York, Melbourne: Cambridge University Press. ‏
[31] Lacy, L. L. (1997, October). Dynamic rock mechanics testing for optimized fracture designs. In SPE annual technical conference and exhibition. OnePetro. ‏
[32] Ameen, M. S., Smart, B. G., Somerville, J. M., Hammilton, S., & Naji, N. A. (2009). Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 26(4), 430-444. ‏
[33] Asef, M. R., & Farrokhrouz, M. (2010). Governing parameters for approximation of carbonates UCS. Electron J Geotech Eng, 15(2010), 1581-1592.
[34] Seyedsajadi, S., & Aghighi, M. A. (2015). Construction and Analysis of a Geomechanical Model for Bangestan Reservoir in Koopal Field. Iranian Journal of Mining Engineering, 10(26), 21-34. ‏
[35] Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics. John Wiley & Sons. ‏
[36] Plumb, R. A. (1994). Influence of composition and texture on the failure properties of clastic rocks. Rock Mechanics in Petroleum Engineering. Society of Petroleu m Engineers.
[37] Eaton, B. A. (1975, September). The equation for geopressure prediction from well logs. In Fall meeting of the Society of Petroleum Engineers of AIME. OnePetro.‏
[38] Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., ... & Cocks, L. R. M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3-4), 325-368. ‏
[39] Azadpour, M., & Shad Manaman, N. (2015). Determination of pore pressure from sonic log: a case study on one of Iran carbonate reservoir rocks. Iranian Journal of Oil and Gas Science and Technology, 4(3), 37-50. ‏
[40] Kidambi, T., & Kumar, G. S. (2016). Mechanical earth modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. Journal of Petroleum Science and Engineering, 141, 38-51. ‏
[41] Tabaeh, H. M., & Mohammad, A. (2016). Estimation of in-situ horizontal stresses using the linear poroelastic model and minifrac test results in tectonically active area. Russian Journal of Earth Sciences, 16(4), 1-9. ‏
[42] Krief, M., Garat, J., Stellingwerff, J., & Ventre, J. (1990). A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). The Log Analyst, 31(06).‏
[43] Rutqvist, J., Birkholzer, J., Cappa, F., & Tsang, C. F. (2007). Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management, 48(6), 1798-1807. ‏
[44] Tillner, E., Shi, J. Q., Bacci, G., Nielsen, C. M., Frykman, P., Dalhoff, F., & Kempka, T. (2014). Coupled dynamic flow and geomechanical simulations for an integrated assessment of CO2 storage impacts in a saline aquifer. Energy Procedia, 63, 2879-2893. ‏
[45] Tran, D., Nghiem, L., & Buchanan, L. (2005, November). An overview of iterative coupling between geomechanical deformation and reservoir flow. In SPE international thermal operations and heavy oil symposium. OnePetro. ‏‏
[46] Wang, C., Wu, Y. S., Xiong, Y., Winterfeld, P. H., & Huang, Z. (2015, February). Geomechanics coupling simulation of fracture closure and its influence on gas production in shale gas reservoirs. In SPE reservoir simulation symposium. OnePetro. ‏
[47] Kim, S., & Hosseini, S. A. (2014). Geological CO2 storage: Incorporation of pore-pressure/stress coupling and thermal effects to determine maximum sustainable pressure limit. Energy Procedia, 63, 3339-3346. ‏
[48] van Thienen-Visser, K., Pruiksma, J. P., & Breunese, J. N. (2015). Compaction and subsidence of the Groningen gas field in the Netherlands. Proceedings of the International Association of Hydrological Sciences, 372, 367-373.