بررسی اثرات انتقال حرارت رسانایی-همرفتی بر شکست هیدرولیکی از طریق تحلیل THM کاملا همبسته با استفاده از روش EFG غنی‌سازی شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیر طوسی، تهران، ایران

2 عضو هیات علمی دانشکده مهندسی عمران دانشگاه صنعتی شریف، تهران، ایران

چکیده

In this study, an eniched element free Galerkin framework is developed to investigate the effects of conductive-convective heat transfer on hydraulic fracturing. Weak and strong discontinuities are introduced in field variables using the enrichment strategy. The cohesive crack model is used in this study to simulate the process of initiation and propagation of fractures in saturated deformable porous media. The complicated process of hydraulic fracturing with thermal effects is simulated considering multiple components including fluid flow within the fracture, fluid flow through the host medium, fluid leak-off from the fracture into the surrounding porous rock, heat transfer within the fracture medium, heat transfer through the host porous rock, the heat exchange between the crack medium and the surrounding media, deformation of porous rock due to the hydraulic and thermal loading and crack propagation. To create the discrete equation system, Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that form a non-linear equation system are solved using the iterative Newton-Raphson procedure. Numerical simulation results show the accuracy of the formulation as well as the performance of the program in coupling the heat transfer equation inside the crack with other governing equations.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effects of conductive-convective heat transfer on hydraulic fracturing via a fully coupled THM analysis using an enriched EFG method

نویسندگان [English]

  • Mohammad Ali Iranmanesh 1
  • Ali Pak 2
1 Assistant professor, Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

In this study, an eniched element free Galerkin framework is developed to investigate the effects of conductive-convective heat transfer on hydraulic fracturing. Weak and strong discontinuities are introduced in field variables using the enrichment strategy. The cohesive crack model is used in this study to simulate the process of initiation and propagation of fractures in saturated deformable porous media. The complicated process of hydraulic fracturing with thermal effects is simulated considering multiple components including fluid flow within the fracture, fluid flow through the host medium, fluid leak-off from the fracture into the surrounding porous rock, heat transfer within the fracture medium, heat transfer through the host porous rock, the heat exchange between the crack medium and the surrounding media, deformation of porous rock due to the hydraulic and thermal loading and crack propagation. To create the discrete equation system, Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that form a non-linear equation system are solved using the iterative Newton-Raphson procedure. Numerical simulation results show the accuracy of the formulation as well as the performance of the program in coupling the heat transfer equation inside the crack with other governing equations.

کلیدواژه‌ها [English]

  • Hydraulic Fracturing
  • Element Free Galerkin
  • Extrinsic Enrichment
  • Thermo-Hydro-Mechanical Analysis
  • Cohesive Crack Model
[1] J. Geertsma and F. De Klerk, (1969) “Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures,” J Pet. Technol., vol. 21, no. 12, pp. 1571–1581, doi: 10.2118/2458-pa.
[2] R. P. Nordgren, (1972) “Propagation of a Vertical Hydraulic Fracture,” Soc. Pet. Eng. J., vol. 12, no. 04, pp. 306–314, doi: 10.2118/3009-pa.
[3] J. Adachi, E. Siebrits, A. Peirce, and J. Desroches, (2007) “Computer simulation of hydraulic fractures,” Int. J. Rock Mech. Min. Sci., vol. 44, pp. 739–757, doi: 10.1016/j.ijrmms.2006.11.006.
[4] K. Yamamoto, T. Shimamoto, and S. Sukemura, (2004) “Multiple fracture propagation model for a three-dimensional hydraulic fracturing simulator,” Int. J. Geomech., vol. 4, no. 1, pp. 46–57, doi: 10.1061/(ASCE)1532-3641(2004)4:1(46).
[5] B. Carter, J. Desroches, A. R. Ingraffea, and P. A. Wawrzynek, (2000) “Simulating fully 3D hydraulic fracturing,” Model. Geomech., Accessed: Dec. 26, 2014. [Online]. Available: http://www.cfg.cornell.edu/~bruce/papers/modeling_geomechanics_2000_carter_etal.pdf.
[6] M. C. Lobão, R. Eve, D. R. . Owen, and E. A. Souza Neto, (2010) “Modelling of hydro-fracture flow in porous media,” Eng. Comput., vol. 27, no. 1, pp. 129–154, doi: 10.1108/02644401011008568.
[7] T. Mohammadnejad and  a. R. Khoei, (2013) “An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model,” Finite Elem. Anal. Des., vol. 73, pp. 77–95, Oct. doi: 10.1016/j.finel.2013.05.005.
[8] S. Salimzadeh and N. Khalili, (2015) “A three-phase XFEM model for hydraulic fracturing with cohesive crack propagation,” Comput. Geotech., vol. 69, pp. 82–92, doi: 10.1016/j.compgeo.2015.05.001.
[9] M. Vahab, S. Akhondzadeh, A. R. Khoei, and N. Khalili, (2018) “An X-FEM investigation of hydro-fracture evolution in naturally-layered domains,” Eng. Fract. Mech., vol. 191, no. February, pp. 187–204 , doi: 10.1016/j.engfracmech.2018.01.025.
[10] S. Samimi and A. Pak, (2016) “A fully coupled element-free Galerkin model for hydro-mechanical analysis of advancement of fluid-driven fractures in porous media,” Int. J. Numer. Anal. Methods Geomech., doi: 10.1002/nag.
[11] G. Tiankui, T. Songjun, L. Shun, L. Xiaoqiang, Z. Wei, and Q. Guanzheng, (2020) “Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress,” Eng. Fract. Mech., p. 107350.
[12] W. Liu, Q. Zeng, and J. Yao, (2018) “Numerical simulation of elasto-plastic hydraulic fracture propagation in deep reservoir coupled with temperature field,” J. Pet. Sci. Eng., vol. 171, no. July, pp. 115–126.
[13] Z. Luo, L. Cheng, L. Zhao, and Y. Xie, (2022) “Numerical simulation and analysis of thermo-hydro-mechanical behaviors of hydraulic fracturing in naturally fractured formation using a THM-XFEM coupling model,” J. Nat. Gas Sci. Eng., vol. 103, no. August 2021, p. 104657.
[14] Z. Zhou, H. Mikada, J. Takekawa, and S. Xu, (2022) “Numerical Simulation of Hydraulic Fracturing in Enhanced Geothermal Systems Considering Thermal Stress Cracks,” Pure Appl. Geophys, vol. 179, pp. 1775–1804.
[15] C. Yan, X. Xie, Y. Ren, W. Ke, and G. Wang, (2022) “A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing,” Int. J. Rock Mech. Min. Sci., vol. 149, no. October 2021, p. 104964.
[16] S. Enayatpour, E. van Oort, and T. Patzek,  (2019) “Thermal cooling to improve hydraulic fracturing efficiency and hydrocarbon production in shales,” J. Nat. Gas Sci. Eng., vol. 62, no. December 2018, pp. 184–201, doi: 10.1016/j.jngse.2018.12.008.
[17] M. S. Mortazavi, P. Pirmoradi, and A. R. Khoei, (2022) “Numerical simulation of cold and hot water injection into naturally fractured porous media using the extended – FEM and an equivalent continuum model,” no. April, pp. 0–39, doi: 10.1002/nag.3314.
[18] S. M. S. Mortazavi and P. Pirmoradi, (2022) “Numerical simulation of cold and hot water injection into naturally fractured porous media using the extended – FEM and an equivalent continuum model,” Int. J. Numer. Anal. Methods Geomech., no. April, pp. 0–39.
[19] S. Salimzadeh, A. Paluszny, and R. W. Zimmerman, (2018) “Effect of Cold CO2 Injection on Fracture Apertures and Growth International Journal of Greenhouse Gas Control E ff ect of cold CO2 injection on fracture apertures and growth,” Int. J. Greenh. Gas Control, vol. 74, no. April, pp. 130–141.
[20] H. Ghasemzadeh and S. A. Ghoreishian Amiri, (2013) “A hydro-mechanical elastoplastic model for unsaturated soils under isotropic loading conditions,” Comput. Geotech., vol. 51, pp. 91–100. http://dx.doi.org/10.1016/j.compgeo.2013.02.006.
[21] H. Ghasemzadeh, M. H. Sojoudi, S. A. Ghoreishian Amiri, and M. H. Karami, (2017) “Elastoplastic model for hydro-mechanical behavior of unsaturated soils,” Soils Found., vol. 57, no. 3, pp. 371–383, http://dx.doi.org/10.1016/j.sandf.2017.05.005.
[22] S. A. Sadrnejad, H. Ghasemzadeh, S. A. Ghoreishian Amiri, and G. H. Montazeri, (2012) “A control volume based finite element method for simulating incompressible two-phase flow in heterogeneous porous media and its application to reservoir engineering,” Pet. Sci., vol. 9, no. 4, pp. 485–497 , doi: 10.1007/s12182-012-0233-6.
[23] S. A. Ghoreishian Amiri, S. A. Sadrnejad, and H. Ghasemzadeh, (2017) “A hybrid numerical model for multiphase fluid flow in a deformable porous medium,” Appl. Math. Model., vol. 45, pp. 881–899, http://dx.doi.org/10.1016/j.apm.2017.01.042.
[24] M. A. Iranmanesh, A. Pak, and S. Samimi, (2018) “Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model,” Comput. Geotech., vol. 99, pp. 93–103, doi: 10.1016/j.compgeo.2018.02.024.
[25] S. Samimi and A. Pak, (2012) “Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method,” Comput. Geotech., vol. 46, pp. 75–83, doi: 10.1016/j.compgeo.2012.06.004.
[26] A. Tootoonchi, A. Khoshghalb, G. R. Liu, and N. Khalili, (2016) “A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media,” Comput. Geotech., vol. 75, pp. 159–173 , doi: 10.1016/j.compgeo.2016.01.027.
[27] A. Khoshghalb and N. Khalili, (2010) “A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media,” Comput. Geotech., vol. 37, no. 6, pp. 789–795, doi: 10.1016/j.compgeo.2010.06.005.
[28] R. W. Lewis and B. A. Schrefler, (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Chichester: Wiley.
[29] G. R. Liu and Y. T. Gu, (2005) An introduction to meshfree methods and their programming. Dordrecht, The Netherlands: Springer.
[30] M. A. Iranmanesh and A. Pak, (2018) “Extrinsically enriched element free Galerkin method for heat and fluid flow in deformable porous media involving weak and strong discontinuities,” Comput. Geotech., vol. 103, no. July, pp. 179–192, doi: 10.1016/j.compgeo.2018.07.013.
[31] A. R. Khoei (2014), Extended Finite Element Method. Wiley.
[32] P. A. Witherspoon, J. S. Y. Wang, K. Iwai, and J. E. Gale, (1980) “Validity of cubic law for fluid flow in a deformable rock fracture,” Water Resour. Res., vol. 16, no. 6, pp. 1016–1024.
[33] G. Ventura, J. X. Xu, and T. Belytschko, (2002) “A vector level set method and new discontinuity approximations for crack growth by EFG,” Int. J. Numer. Methods Eng., vol. 54, no. 6, pp. 923–944, doi: 10.1002/nme.471.
[34]  V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, (2008) “Meshless methods: A review and computer implementation aspects,” Math. Comput. Simul., vol. 79, no. 3, pp. 763–813, doi: 10.1016/j.matcom.2008.01.003.