
 

JOURNAL OF PETROLEUM GEOMECHANICS 

(JPG) 

  

 

 

* Corresponding Author: E-mail address: e_taheri@modares.ac.ir 

 

 

Original article 

Treatment of relative permeability term in two-phase flow problems in 

porous media 
 

Ehsan Taheri1*, Seyed Ali Ghoreishian Amiri 2 

1- Department of Rock Mechanics, Tarbiat Modares University, Tehran, Iran 

2- PoreLab, Department of Civil and Environmental Eng., Norwegian University of Science and 

Technology (NTNU), Trondheim, Norway. 

 
Received: 18 August 2022; Accepted: 17 October 2022 

DOI: 10.22107/jpg.2022.362663.1179 
 

Keywords  Abstract 

This paper presents a control volume finite element model (CVFEM) to 

simulate simultaneous flow of two immiscible fluids in non-deformable 

porous media. The method is fully conservative at the local and global level. 

It keeps the data structure of the common finite element method (FEM). A 

pressure-based formulation is presented in this paper. The proper choice of primary unknown variables is 

a critical step in developing an efficient solution of the multiphase subsurface flow problems. Pressure-

based models are one of the common choices to this end. This type of models consists of strong nonlinear 

terms and encounters convergence difficulties when the Jacobian matrix are poorly approximated. The most 

severe problem is related to the relative permeability term that appears as a function of volume fraction (or 

degree of saturation) of the wetting phase. Since water saturation is not a primary unknown variable, the 

relative permeability terms become a function of two primary unknowns, i.e. wetting and non-wetting 

pressures, together. A fully implicit first order accurate finite difference scheme is employed for temporal 

discretization of the equations. A full Newton method with exact Jacobian is considered in this work, and 

a rapid convergence has been achieved. The model is used to simulating a five-spot problem in a block 

heterogenous porous medium. 

Two-phase flow,  

Porous media, 

Pressure-based solution, 
Relative permeability 

1. Introduction 

Numerical simulation of simultaneous flow of two 

or three immiscible fluids in geological porous 

media is of great interest in many engineering 

disciplines. Areas of applications include, among 

the others, natural gas and oil recovery, 

geothermal energy utilization, underground waste 

repositories, geological sequestration of CO2, and 

underground gas storage. Numerical modelling of 

such problems consists of a system of highly 

nonlinear and coupled partial differential 

equations. As a consequence, in addition to the 

requirement of extensive computational 

resources, they cannot be usually solved 

satisfactorily using standard numerical 

techniques. Thus, a number of almost exclusive 

numerical techniques have been suggested, e.g. 

[1-4], for the treatment of numerical problems 

regarding instabilities and truncation errors 

associated with various nonlinearities involved in 

these problems.  

In general, the numerical schemes adopted 

for modeling multiphase flow in porous media 

consist of spatial discretization of mass 

conservation equations; their temporal 

discretization; and an iterative solver, such as 

newton iteration, to solve the obtained system of 

nonlinear algebraic equations. The studies of 

modeling multiphase flow through porous media, 

e.g. [5-8], identified that the choice of primary 

variables for newton iteration has a significant 

impact on computational performance of the 

model. 

One of the common selections of primary 

variables is to select the fluid phases pressure, 

which known as pressure-based formulation. In 
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this approach, the governing equations are written 

in terms of pressure in each phase through a 

straightforward substitution of the Darcy’s 

equation into the mass balance equation of each 

phase. This approach is adopted by a number of 

researchers, e.g. [9-11], and reasonable results are 

reported. This approach works well when the 

wetting phase effectively exists in the medium. 

In this paper, we practice a CVFE model to 

simulate simultaneous flow of two immiscible 

flow in porous materials, with a full Newton 

solver that can handle the severe nonlinearity 

associated with relative permeability variation. 

 

2. Governing equations  

The system of concern is a an isothermal rigid 

porous medium saturated with two immiscible 
and incompressible fluids (wetting, w , and non-

wetting, n , phases). The multiphase system is 

described using the assumption of superposition; 

i.e. any spatial point, x , in the solution domain, is 

simultaneously occupied by material points of all 

phases, X , while their motions are described 

independently. 

The flow of each phase is described using its 

mass conservation equation: 

( ) 0,     ,Tn
n w n

t


     


+ = =


v
 

(1) 

and the generalized Darcy’s law: 

 rk
n p
    






= = −
K

v q g

 
(2) 

where nα denotes the volume fraction of phase α, 

ρ stands density, v  denotes the relative velocity 

of phase α with respect to the solid skeleton, g is 

the gravitational acceleration vector, qα is the flux 

of phase α , P stands for pressure, K is the absolute 

permeability tensor, µ denotes dynamic viscosity 

and kr is the relative permeability that is related to 

the volume fraction of the wetting phase, nw: 

( )rw wk n= A
 

(3) 

( )rn wk n=G
 

(4) 

Fluids interaction can be considered using 

empirical correlations relating the capillary 

pressure, 

c n wp p p= −
: 

( )w cn p=F
                                            (5) 

Indeed, the following constraint must be 

satisfied: 

w nn n n+ =
                                            (6) 

where n  denotes porosity. 

Differentiating Eqs. (5) and (6) results: 

( )w

w c w n w

c

dn
dn dp n dp dp
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n wdn dn= −
 (8) 

Substituting Eqs. (7) and (8) into Eq. (1) will 

result in: 
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2.1. Initial and boundary conditions 

Equations (9) and (10) represent a system of two 

highly nonlinear and strongly coupled partial 

differential equations defined on a domain Ω 

bounded by ᴦ. The fluids pressure, Pw and Pn, are 

selected as the primary unknown variables. In 

order to complete the system of equations, the 

initial and boundary conditions associated with 

the primary variables should be defined. The 

initial condition should specify the fluid pressures 

at time t=0: 

0 ,       at 0,  on  and p p t = =  
 (11) 

Dirichlet boundary conditions are imposed as 

prescribed values of the primary variables on the 

boundaries: 

,    on pp p
 = 

 
(12) 

and Neumann boundary conditions are imposed as 

prescribed fluxes: 

  . ,    on 

T

r

q

k
q p




   



 


 
= −  
 

K
g n

 

(13) 

 

where 
q  is the imposed mass flux of phase α, n 

denotes the unit outward normal vector to the 

boundary: 

 
T

x y zn n n=n
 

(14) 

The conditions w wp q  = 
, n np q  = 

 should 
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hold on the complementary parts of the boundary. 

 

3. Numerical solution 
Hexahedral elements are employed in this work to 

discretize the physical domain. The field variables 

( , )w np p  are interpolated in terms of their 

corresponding nodal values ( , )w np p : 

,      w w n np p= =Np Np  (15)  

where N  represents the standard finite element 

shape functions for hexahedral elements. 

 

3.1. Mass balance equations - CVFEM 

In order to derive the CVFE formulation of the 

governing equations (9) and (10) through a 

procedure similar to the FEM, the following 

weighting functions, W , are considered: 

( . ). ( . ). ( . )i i i iW H H H    =                    (16) 

where , ,    are the standard natural (local) 

coordination system of the element, the subscript 

i  denotes the element nodes, and H  is the 

Heaviside function: 

1   0
( )

0   0

x
H x

x


= 


                                      (17) 

This weighting function implicitly divides 

the element into subdomains belonging to each 

node. This is known as the subdomain collection 

technique. Fig. 1-a shows the subdomain 

corresponding to node i . As shown, there are 

internal surfaces (abcd, abef, bcfg), namely 

internal boundaries (
int ), that separate this 

subdomain from the rest of the element. 

The fundamental properties of the Heaviside 

function include [12]: 

(18)    
int

. . .
e s s e

T TT T T T T T T Td d d d d
    

  =   =    +     W 1 1 n W n W nF F F F F 

where 
e  and 

s  are the domain of the element 

and the subdomain, respectively, that are bounded 

by 
e  and 

s , and F  denotes a smooth vector 

field. 
 

i

a b
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e f

g
h
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b)

Control Volume

i

 
Fig. 1. Schematic representation of subdomain (a); and 

control volume (b) around node i 

Considering equation (18), the weighted residual 

formulation of equations (9) and (10) over e , 

and equation (13) over e , can be written as: 
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As it can be seen, the internal boundaries appeared 

in the integral form of the partial differential 

equations. This is the main difference of the 

CVFE formulation comparing with the FEM. 

        Using the interpolatory representation of the 

field variables (equation (15)), the discretized 

form of the mass balance equations can be written 

as: 
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int ext 0w n

ww wn w w
t t

 
+ + + =

 

p p
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int ext 0w n
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t t

 
+ + + =

 

p p
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where the coefficients are listed below: 
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int
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qw

ext T

w wq d
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qn

ext T

n nq d


= f W                                         (30) 

       The final set of the nodal equations can now 

be constructed using the standard assembling 

algorithm of the FEM. This will join the 

subdomains from all adjacent elements and forms 

a bigger subdomain, namely control volume, 

around each node (Fig. 1-b). Considering the 

choice of weighting functions (as shown in 

equation (16)), all the integrals in equations (21) 

and (22) will be automatically zero outside of the 

corresponding control volumes. It means, the 

mass balance equations are, in fact, satisfied in the 

control volumes, although they are presented at 

element level. In addition, the flux terms, which 

are discontinues between the adjacent elements, 

are only appeared in surface integral terms on the 
internal boundaries (as shown in equations (27) 

and (28)). Consequently, discontinuity of the 

velocity field between adjacent elements does not 

affect the local conservative characteristic of the 

calculations over the control volumes. Indeed, 

construction of the control volumes is embedded 

in the formulation, and there is no need to 

construct a dual mesh system. The discrete 

approximations follow the standard FE practice, 

the FEM data structure is retained, and the discrete 

equations are processed in elements loop. 

 

3.2. Temporal discretization 

Spatial discretization of the governing equations 

has been carried out in the previous sections. The 

resulted equations (21) and (22) represent a set of 

ordinary differential equations: 

int ext

int ext
0

w

ww wn w w

nw nn n w n

t
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+ + =      
      
  

p

P C f f

C P p f f
       (31) 

Temporal discretization of this system is 

performed by the fully implicit first order accurate 

finite difference scheme. It results in the following 

nonlinear equation: 

int
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(32) 

where 
1n nt t t+ = −  is the time step increment, 

and the subscripts n  and 1n +  denote time steps. 

 

3.3. Linearization and solution strategy 

Linearization of the system is performed using the 

Newton-Raphson algorithm. Through expanding 

equation (32) with the first-order truncated Taylor 

series, the following linear approximation can be 

obtained: 

1

1

1 1

w

n

ii

pwi

n

n pn n

+

+

+ +

  
= −   

     

Rp
J

p R
                            (33) 

where the subscripts denote iterations, and J  is 

the well-known Jacobian matrix. By finding the 

solution of the linearized system of equations (33)

, that is the increment of the nodal degrees of 

freedom, the corresponding nodal unknowns are 

subsequently attained through the following 

incremental relation: 

1 1

1 1 1

i i i

w w w

n n nn n n

+ +

+ + +

     
= +     

     

p p p

p p p
                       (34) 
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This implies that the vector of the nodal unknowns 

is improved at each time step as the iterative 

algorithm proceeds. This iterative process 

continues until the residual vector, R , vanishes 

within the given tolerance. The Jacobian matrix in 

the full Newton-Raphson algorithm is defined as 

1 1/i i

n n+ + R X : 

( )

( )
1

1

. .

. .

i

ww ww wn wni

n

nw nw nn nn
n

t t

t t
+

+

 +  + 
 =
 +  +  

P P C C
J

C C P P
(35) 

in which the partial derivatives are calculated as: 
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4. Numerical example 
To show the efficiency of the proposed algorithm, 

a quarter of a five-spot water-flooding problem 

with a central low permeability zone is considered 

(Fig. 2). The central core region has an absolute 

permeability 1.5K =  millidarcy and the 

surrounding region has 1.5K =  darcy. The low 

permeability zone forms a barrier that splits the 

fluid flow in two parts. The relative permeability 

of each phase in this example is expressed by: 

(2 3 )/

w wres

rw

wsat wres

n n
k

n n

 +

 −
=  

− 
                            (40) 

2 (2 )/

1 1w wres w wres

ro

wsat wres wsat wres

n n n n
k

n n n n

 +    − −
 = − −   
 − −    

(41) 

where 
wsatn  is the volume fraction of the water 

phase at zero suction, 
wresn  is the residual volume 

fraction of water at very high suction,   is a 

fitting parameter related to the pore size 

distribution. The following relation is assumed 

between the volume fraction of water and the 

capillary pressure: 

( ) d

w wres wsat wres

c

p
n n n n

p


 

= + −  
 

                 (42) 

where 
dp  is the displacement pressure for the 

water phase. The reservoir is initially saturated 

with 28% of water and 72% of oil, and the initial 

pressure is equal to zero. Water is injected into the 

domain from the lower left well and with the rate 

of 1600 liters per day, while the mixture of oil and 

water is produced from the upper right well. The 

total pore pressure at the production well is equal 

to zero, so the following system of equations 

should be considered: 

(1 ) 0.w w

w o

n n
p p p

n n
= + − =                        (43) 

c o wp p p= −                                              (44) 

These equations are iteratively coupled with 

the whole system to ensure the fulfillment of the 

above-mentioned restrictions at the production 

well. The other relevant material properties and 

model parameters for this simulation are listed in 

Table 1. The contour plot of water saturation 

distribution after 1000 days of injection and also 

the streamlines are shown Fig, 3. As it can be seen, 

due to the very low permeability of the central 

zone, water front does not penetrate this zone and 

prefers to go through the higher permeable region. 

In a similar example we can make the central 

zone more permeable than its surrounding in 3 

orders of magnitude, i.e. 1.5 darcy for the central 

zone and 1.5 millidarcy for the surrounding. 

Similar contour plot of water saturation 

distribution and the streamlines are shown in Fig.  



Treatment of relative permeability term … Journal of Petroleum Geomechanics; Vol. 5; Issue. 3; autumn 2022 
 

89 
 

for this problem with high permeability in the 

central zone. As it is seen, injected water has 

smoothly entered and passed the high 

permeability zone. Ae expected, water flow has 

more concentrated in the central high permeable 

zone. 

 
Table 1. Material properties and model parameters 

Rock porosity, % 0.208n =  
Oil viscosity, cP 13.o =

 
Water viscosity, cP 0.97w =

 
Oil density, ton/m3 

0 0.85 =
 

Water density, ton/m3 1.w =
 

Relative permeability fitting parameter 0.8 =  
Displacement pressure for water, kPa 2.dp =

 
Water residual volume fraction, % 0.045wresn =

       

 
Fig. 2 Geometric configuration for the block 

heterogeneous problem.  

 

 

 

Fig. 3 Water saturation contours and streamlines for the block heterogeneous problem with low 

permeable central zone 
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Fig. 4 Water saturation contours and streamlines 

for the block heterogeneous problem with high 

permeable central zone 

5. Conclusions 
In this paper, a CVFE solution of two-phase flow 

in geological porous media is presented. The 

discrete approximation follows the standard FE 

practice, and the FEM data structure is retained. 

The proposed solution satisfies the local and 

global conservation of mass, which has been 

demonstrated to be crucial in problems with 

distinct saturation shock front. A fully implicit 

first order accurate finite difference scheme has 

been employed for temporal discretization of the 

equations. A full Newton method with exact 

Jacobian is used to handle the nonlinearity of 

relative permeability terms in the system. A 

couple of five-spot water-flooding problem, with 

a central low and high permeability zone, has been 

chosen to illustrate the efficiency of the solution 

algorithm. 
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