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Keywords  Abstract 

In this paper, models for permeability prediction of oil reservoirs using a 

machine learning approach and petrophysical data are compared. Various 

machine learning methods, including multi-resolution graph-based 

clustering, conventional artificial neural networks and Extreme Learning 

Machines are employed to have a comprehensive comparison. RCAL data 

from one of Iran's oil reservoirs was used to develop and test the machine-

learning approach. The results of the machine learning models employed in 

this paper are compared with relevant real petrophysical data and well 

evaluations. Seven input models of two different wells of this reservoir were 

considered for permeability estimation. The input logs data of models 

include Resistivity (RT), Effective Porosity (PHIE), Density log (RHOB), Sonic log (DT) and 

Compensated neutron porosity log (NPHI) logs data. The correlation coefficient and the root mean square 

error between the prediction data and core data in the ELM method were obtained as 0.94 and 0.06, 

respectively. In the MRGC method, the correlation coefficient and the root mean square error between the 

prediction data and core data were obtained as 0.98 and 0.09, respectively. The obtained results in this paper 

show that the mentioned models are well able to estimate permeability values in all parts of the studied 

formation and it can be concluded that the clustering method based on MRGC has more correlation with 

the core data, and Instead, the ELM method has the least amount of error in permeability prediction. 

According to the error values, ELM can be recommended as the final selected algorithm for permeability 

prediction in this study. 
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1. Introduction 
The application of intelligent systems is 

imperative in instances where mathematical 

modeling is unfeasible [1]. This necessity arises 

from either incomplete knowledge of all 

parameters involved in a given process or the 

intricate nature of the relationships between these 

parameters, rendering system modeling through 

traditional mathematical means impractical. In 

such scenarios, artificial intelligence serves the 

purpose of observing and emulating the behaviour 

of the system [2,3]. Within this domain, numerous 

studies have been undertaken, including the 

utilization of neural networks for the prediction 

and estimation of porosity [4], the application of 

seismic data and artificial neural networks for 

porosity prediction [5], the integration of seismic 

data into neural networks for the determination of 

reservoir parameters [6]. Nooruddin has 

developed a model for predicting permeability 

based on artificial neural networks, employing 

laboratory measurements and capillary injection 

of mercury as input data [7]. Furthermore, Al-

Anazi has demonstrated that support vector 

regression can effectively predict permeability 

and porosity for a sandstone reservoir with 
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multiple data samples [8]. Additionally, Singh has 

employed artificial intelligence to forecast 

porosity using three influencing inputs (sonic, 

density, and resistivity) [9]. 

A particularly efficient generalized model, 

named extreme machine learning, has been 

introduced, boasting a swifter processing speed 

compared to vector networks [10]. Moreover, 

Safarzadeh & Shadizadeh have investigated the 

support vector regression method for prediction, 

analyzing permeability using resistivity, neutron, 

density, gamma rays, and acoustic profiles [11]. 

Olatunji et al. have also developed an 

extreme machine learning model and proposed a 

permeability estimation model utilizing an 

extreme machine learning approach [12]. 

Additionally, Xiao et al. have presented an 

extreme machine learning model featuring 

multiple hidden layers [13]. Adeniran has 

conducted a study on permeability determination 

in both homogeneous and heterogeneous 

reservoirs, employing data clustering techniques 

within the domain of oil and gas fields [14]. Zhang 

has employed univariate prediction model (UPP), 

bivariate prediction model (BPP), support vector 

regression (SVR), random forest (RF), and deep 

residual neural network (ResNet) methods to 

estimate permeability in sandstone [15]. 

The objective of this study is to develop a 

robust predictive model for formation 

permeability through the integration of 

petrophysical log data and core data. The aim is to 

design an intelligent network that demonstrates 

high accuracy in permeability prediction, ensuring 

that the methods employed yield satisfactory 

results with minimal error, and can be reliably 

applied to the entirety of the reservoir [16], [17]. 

2. Data and methodology 
2.1. Artificial Neural Networks method 

(ANN) 
Artificial Neural Networks (ANN) are 

systems that are mathematically designed to 

receive, process and stimulate information. This 

network has two main components: nodes (or 

neurons) and connections (which are weighted 

links between neurons). Each simple network 

includes an input layer, Hidden layer, and an 

output layer as showed in Fig. 1. The input layer 

receives signals from the external environment (or 

other neurons). The Hidden layer gathers and 

processes the input signals. These signals are 

transferred to the output layer and transmitted 

again [18,19]. 

Fig. 1. The structure of the ANN 

 

ANN method has several advantages over 

conventional statistical and deterministic 

methods. The most important of them is that it is 

beyond the limitations of a specific performance 

form. Here, methods, rules or formulas are not 

considered and the only question is what kind of 

input data the neural network can use to create a 

connection with the desired output. In addition, 

unlike linear regression models, the ANN 

approach does not force the predicted values to be 

close to the mean values and therefore preserves 

the true variability of the data [20]. 

In the ANN method, learning is a type of 

supervised learning that requires two groups of 

parameters. Independent parameters and 

dependent parameters. The task of the neural 

network is to correctly estimate the dependent 

parameter with the help of independent 

parameters. 

 In fact, the neural network predicts 

permeability with the help of independent 

parameters, which are the values obtained from 

common well logs and core (permeability) data. 

Due to the fact that here the type of network 

learning is supervised learning. Therefore, to train 

the network, the measured permeability data is 

needed. These data are used as the target 

parameter to adjust the network elements for the 

correct estimation of permeability .[9] 

 

2.2. Multi-Resolution Graph-based 

Clustering method (MRGC) 
The multi-resolution graph-based clustering 

method (MRGC) is actually a combination of 

artificial intelligence techniques and a 

hierarchical clustering method. This method has 
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advantages such as the ability to identify natural 

patterns in electrical diagrams, no need for prior 

knowledge about the data, automatic suggestion 

of the best number of clusters, the least parameters 

and insensitivity to their changes, and no 

restrictions on the type, number of data and 

clusters [21]. This method uses the parameters of 

the Kernel Representative Index (KRI) and 

Neighborhood Index (NI), which, in turn, 

differentiates it from conventional methods. The 

Neighborhood Index is obtained from the rank of 

each data relative to the desired data. The 

Neighborhood Index parameter replaces the 

distance parameter as equation 1. When the two 

points are close to each other, they can be easily 

separated from each other based on their high NI. 

KRI index is a combination of NI function, 

distance and weighted distance M(x,y) as shown 

in equation 2. This index determines the degree of 

a neighborhood or the degree of membership in 

M. If this index is low, it will be affected by M. 

Otherwise, it has a high degree of membership and 

is not affected by M [21].  

where m is the neighborhood ranking, M is 

the weighted distance, y is the mth neighborhood 

for x and D is the distance between x and y. 

When the influence of the first nucleus or 

central point on all its neighbouring members is 

determined, all members are compared. Members 

affected by the nucleus also affect other members. 

Therefore, boundaries are defined where a 

member is influenced by its previous member, but 

cannot influence other members. Therefore, 

boundaries determine the point of division and 

distinguish different groups based on parameters 

[21]. 

2.3. Extreme Learning Machine method 

(ELM) 
Extreme learning machine (ELM) is a type of 

single-layer feedforward neural network 

presented by Huang et al [10]. The ELM model 

includes an input layer, a hidden layer, and an 

output layer, which determines the input weights 

randomly and the output weights analytically. The 

ELM method includes input data, a hidden layer 

and output data. Theoretically, this algorithm 

tends to provide the best generalization 

performance with a very fast learning rate because 

it is a simple unregulated algorithm [22]. This 

method tends to achieve the minimum training 

error and also considers the weights, which is 

contrary to the classic gradient-based learning 

algorithms that only aim to achieve the minimum 

training error but do not consider the size of the 

weights. Also, unlike classical slope-based 

learning algorithms that only work for variable 

activation functions, the ELM learning algorithm 

can be used to train SLFNs with non-

differentiable activation functions [23]. 

Fig. 2 contains the general network diagram 

of the proposed model. This model consists of 

input layers that receive well input values. It also 

has a hidden layer that includes neurons with 

network activation functions and ends with an 

output layer. The single neuron provides the final 

predicted permeability values. 

Fig. 2. The structure of the ELM 

 

2.3.1. The learning process of the ELM method 

In this methodology, the neurons of the input 

layer establish connections with all neurons 

within the hidden layer. The creation of hidden 

layer neurons involves the utilization of bias. The 

activation function for hidden neurons can be a 

piecewise continuous function, while for the 

output layer neuron, it is linear. The Extreme 

Learning Machine (ELM) model employs distinct 

algorithms to compute weights and biases, 

resulting in a noteworthy reduction in network 

𝑁𝐼(𝑋) = ∑ exp⁡(−𝑚)

𝑛−1

𝑁=1

 (1) 

𝐾𝑅𝐼(𝑥) = 𝑁𝐼(𝑥)𝑀(𝑥, 𝑦)𝐷(𝑥, 𝑦) (2) 
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training time [24]. 

The behavior of neurons encompasses two 

essential components: the weighted sum of inputs 

and the activation function. Upon the application 

of a set of weighted input signals, activation 

functions are utilized to derive the response as 

equation 3. In this thesis, the chosen activation 

functions include the positive saturated linear 

transfer function, symmetrical saturated linear 

transfer function, positive linear transfer function, 

linear transfer function, positive hard limit 

transfer function, symmetric hard limit transfer 

function, logarithmic sigmoid transfer function, 

symmetric sigmoid transfer function, and Elliott 

symmetric sigmoid transfer function. The same 

activation functions are applied to neurons within 

the same layers, which may either be linear or 

non-linear. Linear functions yield a straight-line 

graph, while non-linear functions produce a 

curved line. Given that non-linear functions 

involve variable input and output, they commonly 

address classification problems. In ELM, weights 

and biases are randomly assigned between input 

and hidden layer neurons [12,25]. 

where j is the number of neurons in the 

hidden layer, i is the input neuron, k is the number 

of training samples, Hjk is the activation matrix of 

the jth hidden layer neuron for the kth training 

sample, g( ) is the activation function, Wji is the 

weight of the ith input neuron and the jth hidden 

layer neuron, Xjk is the input of the neuron for the 

kth training sample and Bj is the bias of the jth 

hidden layer neuron. 

The matrix H is expressed as the matrix of 

the output hidden layer of the neural network. The 

weights between the neurons of the hidden layer 

and the output are applied using the least squares 

fit for the target values in the training mode 

against the outputs of the neurons of the hidden 

layer for each training example, whose 

mathematical equivalent can be written as 

equation 4 [12,25] :  

𝐻𝛽 = 𝑇 (4) 

𝛽 = (𝛽1, … , 𝛽𝑗)𝑗×1 (5) 

 

Β represents the weight between the neurons 

of the output layer and the neurons of the hidden 

layer, and the vector T represents the target values 

for the training samples, which is expressed as 

equation 6: 

𝑇 = (𝑇1, … , 𝑇𝑘)𝑘×1 (6) 

Finally, the weights can be calculated from 

the following equation: 

𝛽 = 𝐻′𝑇 (7) 

𝐻(𝑤1, … ,𝑤𝑁 , 𝑏1, … , 𝑏𝑁, 𝑥1, … , 𝑥𝑁)

= [
𝑔(𝑤1. 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝑁 . 𝑥1 + 𝑏𝑁)

⋮ ⋱ ⋮
𝑔(𝑤1. 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑤𝑁 . 𝑥𝑁 + 𝑏𝑁)

]

𝑁×𝑁

 

 (8) 

𝛽 =

[
 
 
 
 
𝛽1

𝑇

.

.

.
𝛽𝑁

𝑇]
 
 
 
 

𝑁×𝑚

 (9) 

T =

[
 
 
 
 
𝑇1

𝑇

.

.

.
𝑇𝑁

𝑇]
 
 
 
 

𝑁×𝑚

 (10) 

where x, w, b and β are the weight vectors 

between the neurons of the hidden layers and the 

hidden layer and H' is the inverse Moore-Penrose 

matrix H. The T matrix is the vector between the 

weights of the training [12]. 

 

2.3.2. Data preprocessing in ELM 

Before starting the training, in order to achieve a 

network with higher efficiency, pre-processing 

was done with the help of special functions on the 

inputs and outputs, after applying them, the input 

and output data were scaled and within a specific 

range. (Between 0 and 1+) were placed. One of 

the reasons for emphasizing the normalization of 

the data in this range is that the stimulus functions 

(such as the sigmoid function) cannot distinguish 

between very large values. This makes network 

training difficult. Obviously, after the completion 

of the simulation, the reverse of the above 

functions has been applied. Equation 11 was used 

to normalize the data: 

𝐻𝑗𝑘 = 𝑔(∑𝑊𝑗𝑖𝑋𝑗𝑘) + 𝐵𝑗  (3) 
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𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (11) 

In that, 𝑋𝑛 is the normalized data,⁡𝑋 is the 

initial data,⁡𝑋𝑚𝑖𝑛  is the lowest amount of data, and 

𝑋𝑚𝑎𝑥is the highest amount of data. 

 

2.3.3 Data preparation 

Petrophysical evaluation is the science of 

interpreting the information obtained from well 

logging, which is one of the factors in determining 

the characteristics of hydrocarbon reservoir rocks. 

The purpose of petrophysical evaluation is to 

calculate the petrophysical parameters of the 

formation such as porosity, permeability, water 

and oil saturated shale volume and mineral 

volume. Petrophysical evaluation plays an 

important role in evaluating the productivity of the 

well and ultimately the amount of hydrocarbon in 

situ. Petrophysical evaluation is carried out by two 

definite and probable methods. 

Probabilistic petrophysical method or 

MULTIMIN is based on statistics and probability 

and provides statistical solutions. This method 

provides evaluation by using all the available logs 

at the same time. Therefore, its random errors are 

less. In this study, the multimine module of geolog 

software was used to evaluate the raw data 

obtained from well logging. 

In the studied field, after collecting the 

required data, the information related to the logs 

of wells A and B were prepared and then the 

probability method was considered for 

performing the calculations. Data preparation was 

done in four stages: data loading, quality control 

and data editing, calculation of required 

parameters before the main calculation and 

environmental corrections, and then its 

petrophysical model was built. 

Using the data related to the logs and the 

RCAL data available in wells A and B in the 

studied formation, at first to determine the 

permeability using ANN and MRGC models in 

Geolog software, and ELM model in MATLAB 

software. has been discussed, and then the 

obtained results have been compared with each 

other in order to achieve the best relationship and 

permeability diagram. 

Core data statistics for each of the wells are 

listed in Table 1. PHIE, DT, RHOB, RT, NPHI 

and core permeability data of both wells A and B 

were used to estimate permeability. In this 

method, the data of both wells were used 

simultaneously in order to reach the most suitable 

model. In Table 2, all the models used in the above 

logs are listed in the order of use [26] , [27]. 

Table   1. Core data 

Number of 

core data 

Mean 

permeability 

(mD) 

Interval 

(m) 
Wells 

98 0.74  
3816-

4116 
Well A 

301 1.20  
3546-

3939  
Well B 

 

Table   2. Input models 

Independent parameters Model name 

RT-PHIE-RHOB-DT RPDS 

RT-PHIE-DT RPS 

PHIE-DT-RHOB DSP 

PHIE-RHOB-NPHI NDP 

PHIE-DT-NPHI NSP 

PHIE-RT-RHOB RDP 

RT-PHIE PR 

 

Seventy percent of the entire dataset was 

allocated for training purposes, with an additional 

20% reserved for validation, leaving the 

remaining portion for network testing. The 

rationale behind assigning a substantial 

percentage for training lies in the network's 

capacity to comprehend input-output patterns and 

adapt to diverse conditions. The training process 

involves exposing the network to training data, 

periodically assessing its performance with 

validation data, and ultimately evaluating its 

generalization capabilities through dedicated 

network testing data. 

 

3. Data processing 
3.1. ANN method 
The depicted flow chart of the Artificial Neural 

Network (ANN) method is presented in Fig. 3. 

Fig. 4 and Fig. 5 showcase the application of the 

ANN method, encompassing the training, 

construction, and subsequent results for each of 

the seven models detailed in Table 2. The models 

were applied to both wells, A and B. Importantly, 

all seven models exhibited a favorable alignment 
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with the permeability data obtained from the 

cores. Moreover, these models provided accurate 

estimations of permeability in instances where 

core data was not available.

 

Fig. 3. Flow chart showing the steps of ANN algorithm 

 

  

Fig. 4. predicted logs for permeability using ANN 

method for well A. The first column corresponds to the 

vertical depth relative to the surface. The second column 

displays the effective porosity next to the core porosity 

data. The third to ninth columns also show permeability 

estimations by ANN method using PR, RDP, NSP, NDP, 

DSP, RPS and RPDS models along with core 

permeability data. 

Fig. 5. predicted logs for permeability using ANN 

method for well B. The first column corresponds to the 

vertical depth relative to the surface. The second column 

displays the effective porosity next to the core porosity 

data. The third to ninth columns also show permeability 

estimations by ANN method using PR, RDP, NSP, NDP, 

DSP, RPS and RPDS models along with core 

permeability data. 
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3.1.1. ANN models results 

To juxtapose the outcomes derived from the 

models applied in the Artificial Neural Network 

(ANN) methodology, cross-plots illustrating the 

estimated permeability of each model in 

comparison to core permeability were generated. 

Subsequently, regressions were plotted, and the 

correlation coefficient for each cross-plot was 

calculated. the cross-plots of best model for each 

wells can be seen in Fig. 6 to Fig. 8. The outcomes 

of this comparative analysis are detailed in     

Table 3. To assess and validate the proposed 

framework and facilitate effective comparative 

examinations with other methodologies, standard 

statistical metrics were employed. These metrics 

encompassed the correlation coefficient (R²) and 

the root mean square error (RMSE). 

1. The individual datasets of RT and PHIE logs 

within each well exhibit a commendable 

correlation with the permeability data obtained 

from the cores. Furthermore, the correlation 

coefficient of the PR model utilizing data from 

both wells also indicates a noteworthy 

relationship. This constitutes a noteworthy 

observation . 

2. Although the NPHI log data in well A 

demonstrates a substantial correlation with the 

core data of that particular well, in well B, the 

correlation between the NPHI log data and the 

core data is comparatively lower. Consequently, 

concerning the correlation coefficients of both 

wells, A and B, in NDP and NSP models, we 

observe diminished correlation values . 

3. The correlation coefficients in the RPS and 

RDP models suggest a robust correlation between 

the data derived from RHOB and DT charts with 

the core data . 

4. Synthesizing the aforementioned observations, 

and evident from the correlation coefficient of 

RPDS, it can be inferred that there exists a 

significant correlation (0.78) between PHIE, RT, 

DT, and RHOB data. This suggests that the most 

appropriate model for permeability estimation is 

achieved through the implementation of the 

Artificial Neural Network (ANN) method.

  

Fig. 6. Crossplot of permeability using ANN method 

for well A with PHIE, RT, DT and RHOB data 

 

Fig. 7. Crossplot of permeability using ANN method 

for well B with PHIE, RT, DT and RHOB data 

 



      Permeability Prediction from Log Data … Journal of Petroleum Geomechanics 

Vol. 7; Issue. 3; Autumn 2024 
 

8 
 

 

 
Fig. 8. Crossplot of permeability using ANN method for well A & B with PHIE, RT, DT and RHOB data 

 

Table   3. Comparison of R2 and RMSE between the data of the models presented in the ANN method and 

the core data in both wells A and B 

Well A & B Well B Well A 
Model Name 

RMSE R2 RMSE R2 RMSE R2 

0.51 0.78 0.55 0.82 0.36 0.71 RPDS 

0.57 0.72 0.58 0.34 0.54 0.72 RPS 

0.61 0.65 0.67 0.61 0.34 0.72 DSP 

0.61 0.66 0.68 0.58 0.33 0.76 NDP 

0.63 0.63 0.69 0.56 0.41 0.77 NSP 

0.55 0.75 0.57 0.81 0.46 0.74 RDP 

0.57 0.72 0.57 0.83 0.55 0.72 PR 

 

3.2. MRGC method 
The flow chart of MRGC method shown in Fig. 9. 

The models in Table 2 are estimated by MRGC 

method and the obtained estimated permeability 

can be seen in Fig. 10 and Fig. 11. 

3.2.1. MRGC models  

In order to compare the results obtained from the 

models used in the MRGC method, the estimated 

cross-plots of each model with core permeability 

drawn. Then its regression was plotted and using 

the correlation coefficient of each of the cross-

plots, all seven presented models were compared, 

the cross-plots of best model for each wells can be 

seen in Fig. 12 to Fig. 14, the results of which are 

as described in Table  4.
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Fig. 9. Flow chart showing the steps of MRGC algorithm 

 

  

Fig. 10. predicted logs for permeability using MRGC 

method for well A. The first column corresponds to the 

vertical depth relative to the surface. The second column 

displays the effective porosity next to the core porosity 

data. The third to ninth columns also show permeability 

estimations by MRGC method using PR, RDP, NSP, 

NDP, DSP, RPS and RPDS models along with core 

permeability data. 

Fig. 11. predicted logs for permeability using MRGC 

method for well B. The first column corresponds to the 

vertical depth relative to the surface. The second column 

displays the effective porosity next to the core porosity 

data. The third to ninth columns also show permeability 

estimations by MRGC method using PR, RDP, NSP, 

NDP, DSP, RPS and RPDS models along with core 

permeability data. 

 

3.2.2. The results obtained from the cross-plot of 

MRGC models with core permeability 

1. Analogous to the findings of the Artificial 

Neural Network (ANN) method, the datasets 

derived from the RT and PHIE logs within each 

well exhibit the highest correlation with the 

permeability data acquired from the cores. This 

relationship is further affirmed by the correlation 

coefficient of the PR model utilizing data from 

both wells. 

2. Despite the NPHI log data demonstrating a 

robust correlation with the core data of well A, the 
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correlation between the NPHI log data and the 

core data of well B is comparatively lower. 

Consequently, the correlation coefficients of both 

wells, A and B, in NDP and NSP models reflect 

diminished correlation values. 

3. Examination of the correlation coefficients in 

the RPS and RDP models suggests a strong 

correlation between the data obtained from RHOB 

and DT charts and the corresponding core data . 

4. A comparative analysis of the RPS and DSP 

methods leads to the conclusion that the influence 

of DT is more pronounced than that of RHOB. 

5. Synthesizing the foregoing observations, and 

evident from the correlation coefficient of RPDS 

(0.987), the most substantial correlation among 

the graph data is observed from PHIE, RT, DT, 

and RHOB from right to left. This signifies that 

the most suitable model for permeability 

estimation is achieved through the Modified 

Robust Genetic Clustering (MRGC) method. 

  

Fig. 12. Crossplot of permeability using MRGC method 

for well A with PHIE, RT, DT and RHOB data 

 

Fig. 13. Crossplot of permeability using MRGC method 

for well B with PHIE, RT, DT and RHOB data 

 

 
Fig. 14. Crossplot of permeability using MRGC method for well A & B with PHIE, RT, DT and RHOB data 
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Table   4. Comparison of R2 and RMSE between the data of the models presented in the MRGC method and the core 

data in both wells A and B 

Well A & B Well B Well A 
Model 

Name RMSE R2 RMSE R2 RMSE R2 

0.09 0.987 0.11 0.98 0.04 0.99 RPDS 

0.10 0.98 0.10 0.98 0.12 0.97 RPS 

0.47 0.83 0.51 0.79 0.26 0.84 DSP 

0.44 0.85 0.50 0.81 0.17 0.89 NDP 

0.46 0.84 0.50 0.81 0.31 0.85 NSP 

0.30 0.92 0.32 0.91 0.20 0.93 RDP 

0.16 0.96 0.14 0.91 0.20 0.98 PR 

3.3. ELM method 
The Extreme Learning Machine (ELM) network 

was implemented using the MATLAB program. 

Each of the models (PR, RDP, NSP, NDP, DSP, 

RPS, and RPDS) outlined in Table 2 was 

individually modeled for well A, well B, and the 

combined data from both wells. This resulted in 

the creation of 21 distinct models, each employing 

the ELM method. The network design involved a 

trial-and-error approach to determine the optimal 

number of activation functions and different 

neurons. The flow chart detailing this model is 

presented in Figure 15. The training data were 

input into the networks, and throughout the 

learning process, the learning rate of the network 

was regularly assessed using validation data. 

Validation procedures were iteratively conducted 

for each considered model. The resultant 

outcomes are summarized in Table 5. The 

obtained results indicate the acceptability of each 

of the 21 different models, thereby demonstrating 

the efficacy of the ELM method.

 

 

 

 

Fig. 15. Flow chart showing the steps of MRGC algorithm 
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Table   5. Comparison of R2 and RMSE between the data of the models presented in the ELM method and the core 

data in both wells A and B 

Models 

 name 
Wells 

Train Section Test Section Validation Section Validation Data 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RPDS ALL 0.99 1.1264E-11 0.77 0.1100 0.76 0.1109 0.94 0.0600 

A 0.99 9.1691E-12 0.91 0.0980 0.74 0.1926 0.94 0.0762 

B 0.99 9.0029E-12 0.7 0.1200 0.55 0.1794 0.92 0.0781 

RPS ALL 0.99 1.0157E-11 0.72 0.1533 0.67 0.1473 0.89 0.0831 

A 0.99 1.1708E-11 0.74 0.2674 0.65 0.2474 0.83 0.1432 

B 0.99 1.0806E-11 0.77 0.1637 0.87 0.0995 0.92 0.0794 

DSP ALL 0.99 1.2185E-11 0.31 0.2071 0.36 0.2229 0.8 0.1162 

A 0.99 9.5897E-12 0.85 0.1166 0.75 0.1587 0.95 0.0728 

B 0.99 1.1118E-11 0.54 0.1764 0.33 0.2406 0.85 0.1095 

NDP ALL 0.99 9.1523E-12 0.38 0.2179 0.37 0.2138 0.8 0.1183 

A 0.99 6.1087E-12 0.61 0.2241 0.75 0.1786 0.87 0.1153 

B 0.99 1.2676E-11 0.53 0.2015 0.42 0.2015 0.84 0.1100 

NSP ALL 0.99 1.0217E-11 0.5 0.1712 0.57 0.1934 0.86 0.0980 

A 0.99 9.3946E-12 0.7 0.1962 0.41 0.2437 0.87 0.1175 

B 0.99 8.7451E-12 0.52 0.1838 0.47 0.2423 0.84 0.1122 

RDP ALL 0.99 0.0002762 0.64 0.1655 0.8 0.1179 0.89 0.0825 

A 0.99 9.351E-12 0.7 0.1513 0.53 0.2744 0.88 0.1114 

B 0.99 1.0711E-11 0.63 0.1664 0.6 0.2037 0.87 0.0985 

PR ALL 0.99 0.0009402 0.59 0.1780 0.64 0.1559 0.86 0.0938 

A 0.99 7.086E-12 0.14 0.2289 0.81 0.1166 0.89 0.1086 

B 0.99 0.0059912 0.61 0.1697 0.83 0.1118 0.91 0.0837 

3.3.1. Results and crossplots of ELM model with 

core permeability 

Through an exhaustive examination of 

results derived from diverse methods and under 

varying data conditions, including an analysis of 

the validation section in conjunction with the 

outcomes obtained through network 

implementation using well A, well B, and the 

combined data from both wells A and B, the 

RDPS method emerged as the most suitable. 

Specifically, when applied to the entirety of data 

from both wells A and B, the RDPS method 

demonstrated a notable correlation coefficient of 

0.94 and a root mean square error of 0.0600 in the 

network implementation phase, contrasting with a 

correlation coefficient of 0.76 and a root mean 

square error of 0.1109 in the validation section . 

Given the inherent random selection of weights 

and biases between input and hidden layer 

neurons in the Extreme Learning Machine 

method, a meticulous evaluation of the network's 

efficiency and the assurance that results from the 

RDPS method were not merely coincidental was 

conducted. This involved executing the RDPS 

method 50 times, and the root mean square error 

results in the validation section are depicted in Fig. 

16. This figure illustrates error values ranging 

from 0.06 to 0.18, substantiating the reliability of 

the proposed model. Based on the outcomes 

obtained from the training, testing, and validation 

processes of the RDPS model within the Extreme 

Learning Machine (ELM) network, and 

subsequent verification through 50 repetitions to 

ensure the reliability of the network, the 
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estimations of permeability were applied to both 

wells A and B. These results are visually 

presented inFig. 17 and Fig. 18.  

Detailed visualizations in Fig. 19 to Fig. 24 

provide diagrams and cross plots elucidating the 

performance of this model. 

Fig. 16. Root mean square error results in the validation section in the RPDS model with 50 repetitions in 

the ELM network 

Fig. 17. Graphic matching between permeability values obtained from core and permeability estimated from RPDS 

model in well A with ELM method 

Fig. 18. Graphic matching between permeability values obtained from core and permeability estimated from RPDS 

model in well B with ELM method 
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3.4. Discussions of Results 
The intelligent systems employed in this study 

utilized input data comprising effective porosity, 

resistance, sonic, density, and neutron logs, 

  

Fig. 19. Comparison between the ELM network response 

and the actual core permeability for Well A with PHIE, 

RT, DT and RHOB data 

Fig. 20. Regression diagram between the ELM network 

response and the actual permeability of the core for Well 

A with PHIE, RT, DT and RHOB data 

  

Fig. 21. Comparison between the ELM network response 

and the actual core permeability for Well B with PHIE, 

RT, DT and RHOB data 

Fig. 22. Regression diagram between the ELM network 

response and the actual permeability of the core for Well 

B with PHIE, RT, DT and RHOB data 

  

Fig. 23. Comparison between the ELM network response 

and the actual permeability of the core for Well A & B 

with PHIE, RT, DT and RHOB data 

Fig. 24. Regression diagram between the ELM network 

response and the actual permeability of the core for Well 

A & B with PHIE, RT, DT and RHOB data 
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categorized into seven distinct models. To 

enhance accuracy, isomorphism was applied to 

permeability data, eliminating defective and 

damaged data . 

Quantitative assessment and comparison of 

intelligent methods' results utilized the correlation 

coefficient and root mean square error. In the 

Artificial Neural Network (ANN) method, 

effective porosity and resistance exerted the 

greatest influence on permeability estimation, 

followed by density and acoustic data, with 

neutron data exhibiting the least impact. The 

RDPS model, incorporating resistivity, effective 

porosity, density, and acoustic parameters in the 

input data, yielded the most favorable estimation 

results. Due to the variable ranges of each of the 

input parameters, linear regression methods such 

as ANN provided weaker results than other 

methods . 

Multi-Resolution Graph-based Clustering 

(MRGC) method, employing clustering to group 

similar permeability data, demonstrated superior 

results. These findings corroborated the 

relationships observed in the ANN method, with 

the RPDS model achieving the best outcome, 

characterized by a correlation coefficient of 0.98 

and a root mean square error of 0.09. Among the 

permeability models created, the RPDS model, 

particularly in the MRGC method, emerged as the 

most effective . 

 In the Extreme Learning Machine (ELM) 

method, the input data underwent normalization 

before being implemented across seven models 

for well A, well B, and both wells A and B, 

resulting in 21 distinct states. The correlation 

coefficient and root mean square error for each of 

these states were assessed in the training, testing, 

and validation sections. The optimal result was 

associated with the RPDS model, attaining a 

correlation coefficient of 0.94 and a root mean 

square error of 0.06, utilizing input data from both 

wells A and B. The best results from each of the 

ANN, MRGC and ELM methods are given in 

Table 6 . 

In the ELM network, the weights and biases 

between the input and hidden layer neurons have 

been chosen randomly, as a result, this method, in 

addition to the desired result, has less error and 

high calculation speed. The lowest error value was 

related to the ELM method with the root mean 

square error of 0.06 and the correlation coefficient 

value of 0.94. 

Table   6. R2 and RMSE of each method for 

permeability prediction 

Method R2 RMSE 

ANN 0.78 0.51 

MRGC 0.987 0.09 

ELM 0.94 0.06 

 

4. Conclusion 
This paper proposes an integration of ANN, 

MRGC and ELM methods for determining core 

permeability from conventional well logs. By 

examining the results of each of the seven 

presented models and comparing them with each 

other, it was found that the input data of useful 

porosity and resistance had the greatest impact on 

permeability estimation, followed by density and 

acoustic data. The least impact is related to 

neutron data. By examining the results, the best 

estimation result was related to the RDPS model, 

which used resistance, effective porosity, density, 

and acoustic parameters in the input data . 

• The RPDS model in all three methods, ANN, 

MRGC and ELM, has the most agreement and 

correlation with core data 

• In the MRGC method, better results were 

obtained due to the use of clustering and dividing 

permeability data with values close to each other 

into one cluster. 

• The highest value of correlation coefficient is 

related to MRGC method with a correlation 

coefficient value of 0.987 and root mean square 

error of 0.09 . 

• In the ELM network, the weights and biases 

between the input and hidden layer neurons have 

been chosen randomly, as a result, this method, in 

addition to the desired result, has less error and 

high calculation speed . 

• The lowest error value was related to the ELM 

method with the root mean square error of 0.06 

and the correlation coefficient value of 0.94 .
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