ارایه یک مدل توام ژئومکانیکی- هیدرودینامیکی برای پیش‌بینی ماسه‌دهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده‌ی مهندسی عمران، گروه خاک و پی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

2 گروه مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در صنعت نفت به تولید ذرات یا تکه‌های به هم چسبیده ماسه همراه با سیالات مخزن، ماسه‌دهی گفته می‌شود. در ماسه‌دهی از چاه‌های نفت معمولا دو مکانیسم اصلی دخیل می‌باشد. مکانیسم اول ناپایداری مکانیکی و خرد شدن سنگ در مجاورت گمانه چاه بوده و مکانیسم بعدی، ناپایداری هیدرودینامیکی ناشی از اعمال نیروی تراوش بر مصالح خرد شده است. در این مقاله با در نظر گرفتن هر دو مکانیسم مزبور، یک مدل عددی برای پیش‌بینی شروع و میزان ماسه‌دهی پیشنهاد شده است. پیاده‌سازی مدل در یک برنامه اجزای محدود با توام‌سازی صریح معادلات جریان سیال و تغییرشکل اسکلت جامد تشریح شده است. مدل پیشنهادی با حذف المان‌های ارضاء کننده معیار ماسه‌دهی و همچنین تکه سنگ‌های نسبتا بکر جدا شده از مخزن، قادر به نمایش تغییرات هندسی حفره در اثر ماسه‌دهی می‌باشد. این مدل با استفاده از نتایج چاپ شده یک آزمایش ماسه‌دهی بر روی مغزه مشبک‌کاری شده از یک سنگ مخزن، کالیبره شده و مورد ارزیابی قرار گرفته است. نتایج مدل در قالب شروع و میزان ماسه‌دهی، انطباق مناسبی را با نتایج آزمایشگاهی نشان می‌دهد که بیانگر قابلیت استفاده از آن در تحلیل ماسه‌دهی چاه‌های نفت است.

کلیدواژه‌ها


عنوان مقاله [English]

A coupled Geomechanics-Hydrodynamic model for numerical prediction of sand production

نویسندگان [English]

  • Hasan Ghasemzadeh 1
  • Seyed Amirodin Sadrnejad 1
  • Ahmadali Khodaei Ardabili 2
1 Civil Engineering Department, K.N. Toosi University of Technology, Vali-Asr St., Mirdamad Cr., Tehran, Iran
2 Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

In the oil industry, production of sand particles or detached sand clumps together with the formation fluids is called sand production. Sand production in oil wells is usually related to two fundamental mechanisms. The first mechanism is mechanical instability and degradation of the rock in the vicinity of the wellbore and the other is hydrodynamical instability due to flow induced drag force on the degraded material. In this paper, considering both the mechanisms, a new numerical model for predicting the onset of sanding as well as the amount of sanding is proposed. Implementation of the model in an explicitly coupled flow and deformation finite element program is described. The proposed model by removing the elements that have satisfied the sanding criteria as well as isolated rock chunks from reservoir can capture cavity evolution associated with sand production. The model is calibrated and validated against published results of a sanding experiment in a perforated reservoir rock. Results of the model in terms of initiation and amount of sanding are compares well with the experimental observations which suggests it can be used for sanding analysis of oil wells.

کلیدواژه‌ها [English]

  • Sand Production Prediction
  • Sanding Criteria
  • Perforation Tunnel
  • Numerical Implementation
  • Finite element method
Bažant, P., & Oh, B. H. (1986). Efficient Numerical Integration on the Surface of a Sphere. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 66, 37-49. doi:10.1002/zamm.19860660108
Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. (2014). Nonlinear Finite Elements for Continua and Structures (2 ed.). Wiley.
Bower, A. F. (2009). Applied Mechanics of Solids. Boca, Raton: CRC Press.
Bratli, R. K., & Risnes, R. (1981). Stability and Failure of Sand Arches. Society of Petroleum Engineers Journal, 21, 236-248. doi:10.2118/8427-PA
Chen, X., & Bažant, Z. P. (2014). Microplane damage model for jointed rock masses. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 1431-1452. doi:10.1002/nag.2257
Chen, Z., Huan, G., & Ma, Y. (2006). 2. Flow and Transport Equations. In Computational Methods for Multiphase Flows
in Porous Media (pp. 9-49). Society for Industrial and Applied Mathematics.
Crook, T., Willson, S., Yu, J. G., & Owen, R. (2003). Computational modelling of the localized deformation associated with borehole breakout in quasi-brittle materials. Journal of Petroleum Science and Engineering, 38, 177-186.
Fattahpour, V., Moosavi, M., & Mehranpour, M. (2012a). An experimental investigation on the effect of rock strength and perforation size on sand production. Journal of Petroleum Science and Engineering, 86–87, 172-189. doi:j.petrol.2012.03.023
Fattahpour, V., Moosavi, M., & Mehranpour, M. (2012b). An experimental investigation on the effect of grain size on oil-well sand production. Petroleum Science, 9(3), 343-353. doi:10.1007/s12182-012-0218-5
Fjær, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Petrolem related rock mechanics.. Hungary: Elsevier.
Gravanis, E., Sarris, E., & Papanastasiou, P. (2015). Hydro-mechanical erosion models for sand production. International Journal for Numerical and Analytical Methods in Geomechanics, 39, 2017-2036. doi:10.1002/nag.2383
Gui, F., Khaksar, A., Zee, W. V., & Cadogan, P. (2016). Improving the Sanding Evaluation Accuracy by Integrating Core Tests, Field Observations and Numerical Simulation. SPE Asia Pacific Oil & Gas Conference and Exhibition. Perth: Society of Petroleum Engineers. doi:10.2118/182499-MS
Kim, S. H., Sharma, M. M., & Fitzpatrick, H. J. (2012). A Predictive Model for Sand Production in Poorly Consolidated Sands. Int. Petroleum Technology Conference. Bangkok.
Lee, H., Moon, T., & Haimson, B. C. (2016). Borehole Breakouts Induced in Arkosic Sandstones and a Discrete Element Analysis. Rock Mechanics and Rock Engineering, 49, 1369-1388. doi:10.1007/s00603-015 0812-0
Lewis, R. W., & Schrefler, B. A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley.
Moosavi, M. (2015). Sand Production Mechanism in Oil Wells and Controlling Factors. 1st National Conference on Petroleum Geomechanics. Tehran: International Convention Center of RIPI.
Morita, N., & Fuh, G. F. (1998). Prediction of Sand Problems of a Horizontal Well from Sand Production Histories of Perforated Cased Wells. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers. doi:10.2118/48975-MS
Morita, N., Whitfill, D. L., Fedde, O. P., & Levik, T. H. (1989a). Parametric Study of Sand-Production Prediction: Analytical Approach. SPE Production Engineering Journal, 4, 25–33. doi:10.2118/16990-PA
Morita, N., Whitfill, D. L., Massie, I., & Knudsen, T. W. (1989b). Realistic Sand-Production Prediction: Numerical Approach. SPE Production Engineering Journal, 4, 15–24. doi:10.2118/16989-PA
Nouri, A., Kuru, E., & Vaziri, H. (2009). Elastoplastic Modelling of Sand Production Using Fracture Energy Regularization Method. Journal of Canadian Petroleum Technology, 48, 64–71. doi:10.2118/09-04-64
Nouri, A., Vaziri, H., Kuru, E., & Islam, R. (2006). A comparison of two sanding criteria in physical and numerical modeling of sand production. Journal of Petroleum Science and Engineering, 50, 55-70.
Pak, A., Abbasi, B., Rouhbakhsh, B., & Selseleh, A. (2015). Numerical Study of Sand Production in Oil
Extracting Wells. 1st National Conference on Petroleum Geomechanics. Tehran: International Convention Center of RIPI.
Rahmati, H. (2013). Micromechanical Study of Borehole Breakout Mechanism. Ph.D. thesis, University of Alberta
Rahmati, H., Nouri, A., Vaziri, H., & Chan, D. (2012). Validation of Predicted Cumulative Sand and Sand Rate Against Physical-Model Test. Journal of Canadian Petroleum Technology, 51, 403-410. doi:10.2118/157950-PA
Ranjith, P. G., Perera, M. S., Perera, W. K., Choi, S. K., & Yasar, E. (2014). Sand production during the extrusion of hydrocarbons from geological formations: A review. Journal of Petroleum Science and Engineering, 124, 72-82. doi:10.1016/j.petrol.2014.10.017
Sadrnejad, S. A., & Shakeri, S. (2017). Fabric assessment of damaged anisotropic geo-materials using the multi-laminate model. Int. Journal of Rock Mechanics and Mining Sciences, 91, 90-103. doi:10.1016/j.ijrmms.2016.11.013
Sanfilippo, F., Brignoli, M., Giacca, D., & Santarelli, F. J. (1997). Sand Production: From Prediction to Management. SPE European Formation Damage Conference. The: Society of Petroleum Engineers. doi:10.2118/38185-MS
Settari, A., & Walters, D. A. (2001). Advances in Coupled Geomechanical and Reservoir Modeling With Applications to Reservoir Compaction. SPE Journal, 6. doi:10.2118/74142-PA
Tronvoll, J., & Fjær, E. (1994). Experimental study of sand production from perforation cavities. Int. Journal of Rock Mechanics and Mining Sciences & Geomechanics, 31, 393-410. doi:10.1016/0148-9062(94)90144-9
Vardoulakis, I., Stavropoulou, M., & Papanastasiou, P. (1996). Hydro-mechanical aspects of the sand production problem. Transport in Porous Media, 22, 225-244. doi:10.1007/BF01143517
Walton, I. C., Atwood, D. C., Halleck, P. M., & Bianco, L. C. (2002). Perforating Unconsolidated Sands: An Experimental and Theoretical Investigation. SPE Drilling & Completion, 17, 141-150. doi:10.2118/79041-PA
Wang, H., Cardiff, P., & Sharma, M. M. (2016). A 3-D Poro-Elasto-Plastic Model for Sand Production around Open-Hole and Cased & Perforated Wellbores. 50th U.S. Rock Mechanics/ Geomechanics Symposium. Houston: American Rock Mechanics Association.
Wang, J., & Wan, R. G. (2004). Computation of sand fluidization phenomena using stabilized finite elements. Finite Elements in Analysis and Design, 40, 1681-1699. doi:10.1016/j.finel.2003.10.005
Wang, Y., & Papamichos, E. (2012). Sand Prediction by Different Criteria and a Validation by a Perforated Test in a Sandstone. SPE Heavy Oil Conference Canada. Calgary, Alberta, Canada: Society of Petroleum Engineers.
Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). In The Finite Element Method: its Basis and Fundamentals (7 ed.). Oxford: Butterworth-Heinemann.