مدل‌سازی عددی اثر زبری بر رفتار جریان سیال در شکستگی طبیعی سنگ با استفاده از نرم افزار Fluent

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده معدن، نفت وژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود رییس هیات مدیره انجمن ژئومکانیک نفت ایران

3 شرکت پایانه های نفتی ایران تهران ایران

چکیده

در بسیاری از پروژه‌های مهندسی ژئومکانیک، شناخت رفتار هیدرولیکی شکستگی‌های سنگی به عنوان بخش تراوای توده‌سنگ ضروری است. پارامترهای هندسی شکستگی، نظیر زبری دیواره‌ها و بازشدگی شکستگی تاثیر چشم‌گیری در رفتار هیدرولیکی و مکانیکی آن دارد، در این مقاله این پارامترها به صورت عددی مورد مطالعه قرار گرفته‌اند. در تهیه مدل هندسی از اسکن سه بعدی دیواره‌های شکستگی سنگ طبیعی استفاده شده و با استفاده از نرم افزار Fluent و حل معادله‌های ناویر- استوکس در این مدل، جریان سیال در شکستگی سنگ شبیه‌سازی شده است. اعتبار مدل‌سازی عددی نیز با نتایج آزمایشگاهی کنترل شده که حاکی از صحت روش مدل‌سازی است. در ادامه برای محدوده وسیعی از نرخ جریان و زبری‌های متفاوت با استفاده از این مدل عددی، جریان سیال در شکستگی سنگی مورد بررسی قرار گرفته است. نتایج این مدلسازی نشان می‌دهد که رابطه ماکروسکوپی فورچمهیر به خوبی جریان غیرخطی سیال در شکستگی سنگی را توصیف می‌کند. مقادیر ضرایب خطی و غیرخطی معادله فورچمهیر برای هریک از مدل‌های هندسی برآورد شده است. افزون برآن نتایج بدست آمده نشان می‌دهد که با افزایش بازشدگی، مقادیر ضرایب خطی و غیرخطی کاهش می‌یابد.

کلیدواژه‌ها


Crandall, D., Bromhal, G., & Karpyn, Z. T. (2010). Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 47(5), 784–796. http://doi.org/10.1016/j.ijrmms.2010.03.015
Javadi, M., Sharifzadeh, M., & Shahriar, K. (2010). A new geometrical model for non-linear fluid flow through rough fractures. Journal of Hydrology, 389(1–2), 18–30. http://doi.org/10.1016/j.jhydrol.2010.05.010
Kong, B., & Chen, S. (2018). Numerical simulation of fluid flow and sensitivity analysis in rough -wall fractures. Journal of Petroleum Science and Engineering, 168, 546–561. http://doi.org/10.1016/j.petrol.2018.04.070
Koyama, T., Li, B., Jiang, Y., Jing, L., Engineering, R., Koyama, T., & Engineering, W. R. (2009). Numerical modelling of fluid flow tests in a rock fracture with a special algorithm for con tact areas. Computers and Geotechnics, 36(1–2), 291–303. http://doi.org/10.1016/j.compgeo.2008.02.010
Koyama, T., Neretnieks, I., & Jing, L. (2008). A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear. International Journal of Rock Mechanics and Mining Sciences, 45(7), 1082–1101. http://doi.org/10.1016/j.ijrmms.2007.11.006
Lee, H. S., & Cho, T. F. (2002). Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mechanics and Rock Engineering, 35(4), 299–318. http://doi.org/10.1007/s00603-002-0028-y
Li, B., Jiang, Y., Koyama, T., Jing, L., & Tanabashi, Y. (2008). Experimental study of the hydro -mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. International Journal of Rock Mechanics and Mining Sciences, 45(3), 362–375. http://doi.org/10.1016/j.ijrmms.2007.06.004
Lin, M., Chen, S., Ding, W., Chen, Z., & Xu, J. (2015). Effect of fracture geometry on well production in hydraulic-fractured tight oil reservoirs. Journal of Canadian Petroleum Technology, 54(3), 183–194. http://doi.org/10.2118/167761-PA
Nasri, M. J., Ramezanzadeh, A., & Jenabi, H. (2019). Laboratory investigation nonlinear flow characteristics through natural rock fractures. Quarterly Journal of Engineering Geology and Hydrogeology, qjegh2017-142. http://doi.org/10.1144/qjegh2017-142
Nazridoust, K., Ahmadi, G., & Smith, D. H. (2006). A new friction factor correlation for laminar, singlephase flows through rock fractures. Journal of Hydrology, 329(1–2), 315–328. http://doi.org/10.1016/j.jhydrol.2006.02.032
Nowamooz, A., Radilla, G., & Fourar, M. (2009). Non-Darcian two-phase flow in a transparent replica of a rough-walled rock fracture. Water Resources Research, 45(7), W07406. http://doi.org/10.1029/2008WR007315
Ranjith, P. G., & Darlington, W. (2007). Nonlinear single-phase flow in real rock joints. Water Resources Research, 43(9), 1–9. http://doi.org/10.1029/2006WR005457
Sharma, M. M., & Manchanda, R. (2015). The Role of Induced Un-propped (IU) Fractures in Unconventional Oil and Gas Wells. SPE Annual Technical Conference and Exhibition. Houston, Texas, USA: Society of Petroleum Engineers. http://doi.org/10.2118/174946-MS
Zhang, Z., & Nemcik, J. (2013). Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. Journal of Hydrology, 477, 139–151. http://doi.org/10.1016/j.jhydrol.2012.11.024
Zhou, J. Q., Hu, S. H., Fang, S., Chen, Y. F., & Zhou, C. B. (2015). Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. International Journal of Rock Mechanics and Mining Sciences, 80, 202–218. http://doi.org/10.1016/j.ijrmms.2015.09.027
Zimmerman, R. W., Al-Yaarubi, A., Pain, C. C., & Grattoni, C. A. (2004). Non-linear regimes of fluid flow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 41(SUPPL. 1). http://doi.org/10.1016/j.ijrmms.2004.03.036
Zimmerman, R. W., & Bodvarsson, G. S. (1996). Effective transmissivity of two-dimensional fracture networks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(4), 433–438. http://doi.org/10.1016/0148-9062(95)00067-4
Zimmerman, R., & Yeo, I. (2000). Fluid Flow in Rock Fractures: From the Navier‐ Stokes Equations to the Cubic Law. Dynamics of Fluids in Fractured Rock , 213–224. Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/GM122p0213/summary
Zoorabadi, M., Saydam, S., Timms, W., & Hebblewhite, B. (2015). Non-linear flow behaviour of rough fractures having standard JRC profiles, 76, 192–199. http://doi.org/10.1016/j.ijrmms.2015.03.004