Evaluation of Reservoir Properties and Fracture Estimation Using Petrophysical Logs in a Southwestern Iranian Hydrocarbon Field

Document Type : Original Article

Authors

1 petroleum engineering department

2 geophysics department

Abstract

The Sefid-Zakhur Anticline is Located in the Fars Region, 160 Km South-East of Shiraz and South of the Aghar Gas Field, in the West of the Dalan and the Gas Field of Day. In General, Fractures of Hydrocarbon Reservoirs Have a Many Complexions which can Play an Important Role in all Stages of the Reservoir such as Exploration, Development and Expansion, So the First Step is to Study Fractures Especially Reservoirs Failure Identification of Fractures, their Estimation and Analysis. Exploring, Evaluating and Researching Hydrocarbon Fields Requires a Large Amount of Information from Wells, Which Is Usually Not Due to Cost and Problems. In this Research, Firstly, according to Raw Data Obtained from Drilling and with the Help of Commercial Software, Petrophysical Parameters of Sefid-Zakhur Formation as Type of Lithology, Porosity, Shale Volume and Water Saturation, using Evaluate a Probabilistic Method. Based on the Results of Cross-Plot Neutron-Density and M-N Plot, Lithology is Dominated by Carbonate Formation and a Small Percentage of Sandstone and Shale. The Average Water Saturation in the Studied well is 36%. Also, due to the Low volume of Shale 15%, the Average and Total Porosity is Equal in Most of the Wells. To Determine Electro-Facies in the Studied Field of the Method Multi-Resolution Graph-Based Clustering (MRGC) use and Determine 6 Electro-Facies of that Number Facies 2 Due to the Low Volume of Shale, It Has the Best Reservoir Quality and Facies Number 4 Have a Poor Reservoir Quality Due the High Volume of Shale. Method used in this Research a Convenient Method to Analyze the Reservoir Zones and Especially it can be used in Wells Lacking Cores. In the Next Step, The Method is Referred to for Fracture Zones was Determined using the Petrophysical Logs.

Keywords


آقا نباتی، سید علی، (1383)، زمین‌شناسی ایران، سازمان زمین‌شناسی کشور، 640 صفحه.
ابطحی، سید تقی، (1378)، معرفی یک میدان: میدان سفیدزاخور - مخزن دهرم، ماهنامه اکتشاف و تولید نفت و گاز، شماره 50.
مطیعی، همایون، (1375)، زمین‌شناسی ایران: زمین‌شناسی نفت زاگرس (جلد 2)، سازمان زمین‌شناسی کشور، 537 صفحه.
رضایی، محمدرضا، (1380)، زمین شناسی نفت، انتشارات علوی، 472 صفحه.
سپهری، امیر؛ حیدری، آرش؛ معتمدی، حسین؛ عبادتی، ناصر؛ (1395) تحلیل شکستگی سازندهای هیدروکربوری میدان سفیدزاخور (جنوب فارس) و تأثیر آن در افزایش پتانسیل مخزنی، کنفرانس بین المللی نوآوری در علوم و تکنولوژی، 731-752.
مدنی، آصف؛ کمری، مصیب؛ رستمیان، عارف؛ (1394)، مدل‌سازی الکتروفاسیس و پیش‌بینی لاگ با استفاده از نرم‌افزار ژئولاگ، کتاب آوا، 260 صفحه.
Abdideh, M. a. (2013). Estimating the reservoir permeability and fracture density using petrophysical logs in Marun oil field (SW Iran). Petroleum Science and Technology, 1048-1056.
Almagro, S. P. (2014). Sealing fractures: Advances in lost circulation control treatments. Oilfield Review, 4-13. Retrieved from Schlumberger.
Baecher, G. B. (1983). Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology, 329-348.
Bour, O. a. (2002). A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). Journal of Geophysical Research: Solid Earth, ETG-4.
Cao, N. a. (2019). Stress-Dependent Permeability of Fractures in Tight Reservoirs. Energies, 117.
Cappa, F. a.-F. (2006). Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. International Journal of Rock Mechanics and Mining Sciences, 1062-1082.
Halliburton . (2018). Retrieved from Halliburton : https://www.halliburton.com/en-US/default.html
Han, G. a. (2003). Description of fluid flow around a wellbore with stress-dependent porosity and permeability. Journal of Petroleum science and engineering, 1-16.
Hart, R. (2003). Enhancing rock stress understanding through numerical analysis. International journal of rock mechanics and mining sciences, 1089-1097.
Itasca. (2016). 3DEC User Manual Version 5.2. Minneapolis: Itasca Consulting Group.
Karatela, E. a. (2016). Study on effect of in-situ stress ratio and discontinuities orientation on borehole stability in heavily fractured rocks using discrete element method. Journal of Petroleum Science and Engineering, 139, 94–103.
Labenski, F. a. (2003). Drilling Fluids Approaches for Control of Wellbore Instability in Fractured Formations. SPE/IADC Middle East Drilling Technology Conference and Exhibition. Abu Dhabi: Society of Petroleum Engineers.
Lei, Q. a.-P.-F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 151-176.
Li, S. a. (2012). Pore-pressure and wellbore-stability prediction to increase drilling efficiency. Journal of Petroleum Technology, 64, 98-101.
Mansour, A. a. (2019). Smart lost circulation materials for productive zones. Journal of Petroleum Exploration and Production Technology, 281-296.
Meng, M. a. (2019). Wellbore stability in naturally fractured formations featuring dual-porosity/singlepermeability and finite radial fluid discharge. Journal of Petroleum Science and Engineering, 790-803.
Min, K.-B. a.-F. (2004). Stress-dependent permeability of fractured rock masses: a numerical study. International Journal of Rock Mechanics and Mining Sciences, 1191-1210.
Nagel, N. a.-N. (2013). Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock mechanics and rock engineering, 581-609.
Salehi, S. a. (2010). Numerical simulations of wellbore stability in under-balanced-drilling wells. Journal of Petroleum Science and Engineering, 229-235.
Sapigni, M. a. (2003). Engineering geological characterization and comparison of predicted and measured performance of a cavern in the Italian Alps. Engineering geology, 47-62.
Taheri, A. (2018). Three-dimensional hydro-mechanical model of borehole in fractured rock mass using discrete element method. Journal of Natural Gas Science and Engineering, 53 , 263–275.
Tour, J. M. (2012). Graphene compositions and drilling fluids derived therefrom. United States Patent and Trademark Office.
Valenti, N. P. (2002). A unified theory on residual oil saturation and irreducible water saturation. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. International journal of rock mechanics and mining sciences, 160-170.
Zhang, X. a. (1999). Numerical modelling of wellbore behaviour in fractured rock masses. Journal of Petroleum Science and Engineering, 95-115.
Zhang, Z. a. (2018). Effects of stress-dependent permeability on well performance of ultra-low permeability oil reservoir in China. Journal of Petroleum Exploration and Production Technology, 565-575.