Numerical study of the effect of reservoir permeability and fluid leak-off factor on the Hydraulic fracture characteristics in oil reservoirs and comparison with KGD and PKN analytical models

Document Type : Original Article

Authors

1 Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

2 Department of Civil Engineering. Sharif University of Technology. Tehran, Iran

Abstract

From the point of view of oil reservoir engineering, increasing the production from low permeability reservoirs and damaged wells is one of the most important and challenging issues. Especially if these reservoirs have high oil reserves and have more production potential. The Hydraulic Fracturing method is one of the methods of increasing the extraction of oil reservoirs that have been considered by many researchers in the last few decades.
By injecting pressurized fluid into the reservoirs, in situ stresses and tensile strength of the rock can be overcome and cracks can be created in the rock. Geomechanical conditions of the reservoir such as rock hardness, in situ stresses, tensile strength, the permeability of the reservoir, the amount of fluid leak-off inside the crack to the reservoir, etc. directly affect the characteristics of the created Hydraulic Fractur. There are various analytical models for predicting Hydraulic Fractur characteristics. Among these, two models, KGD and PKN, are among the most famous and practical analytical models of Hydraulic Fracture. Both models calculate the crack characteristics by considering the plane strain conditions in two-dimensional space, but with two different approaches (the first model in the horizontal plane and the second model in the vertical plane). In these models, some effective components such as the permeability of the reservoir and the amount of fluid leak-off from the crack walls have not been considered.
The aim of this study was to investigate the effects of fluid leak-off, which has a great impact on the success or failure of Hydraulic Fracturing operations. In the present paper, the effect of two important parameters of reservoir rock permeability and fluid leak-off from crack walls to the reservoir on Hydraulic Fracture characteristics, using numerical modeling by XFEM method, has been studied.

Keywords


[1] Veatch, R.W.; Moschovidis, Z.A.; Fast, C.R. (1989). An overview of hydraulic fracturing. In Oildley, Holditch, Nierode, Veatch, editors. Recent advances in hydraulic fracturing (Vol. 12, pp. 1-38). Monograph, Society of  Petroleum engineers.
[2] King, G.E. (2012). Hydraulic Fracturing 101. SPE 152596. Hydraulic Fracturing Technology Conference, Woodlands, Texas, USA
[3] Khristianovic, S.A.; Zheltov, Y.P. (1955). Formation of vertical fractures by means of highly viscous liquid. In: Proceedings of the fourth world petroleum congress, Rome (pp. 579–8)
[4] Perkins, T.K.; Kern, L. R. (1961). Widths of hydraulic fractures. J. Pet. Tech., 13(9):937–49 [SPE 89]
[5] Gadiyar, B. R.; Shivaswamy, U.; Gupta, A. (1998). Experimental study and modeling of hydraulic fracturing fluid leakoff in presence of gas saturation. (no. 1).
[6] Moes, N.; Belytschko, T. (2002). Extended finite element method for cohesivecrack growth. Engineering Fracture Mechanics (Vol. 69, no.7, pp. 813 – 833).
[7] Fisher, M. K.; Heinze, J. R.; Harris, C. D.; Davidson, B. M.; Wright, C. A.; Dunn, K. P. (2004). Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping. SPE Annual Technical Conference and Exhibition.
[8] Casas, L. A.; Miskimins, J. L.; Black, A. D.; Green, S. J. (2006). Laboratory Hydraulic Fracturing Test on a Rock With Artificial Discontinuities. SPE Annu. Tech. Conf. Exhib.
[9] Chen, Z.; Bunger, A. P.; Zhang, X.; Jeffrey, R. G. (2009). Cohesive zone finite element-based modeling of hydraulic Fractures. Acta Mechanica Solida Sinica (Vol. 22, no. 5, pp. 443–452). Wuhan, China.
[10] Yao, Y.; Gosavi, S. V.; Searles, K. H.; Ellison, T. K. (2010). Cohesive Fracture Mechanics Based Analysis to Model Ductile Rock Fracture. 44th US Rock Mechanics Symposium (p. ARMA 10-140).
[11] Mohammadnejad, T.; Khoei, A.R. (2013). An extended finite element method for hydraulic fracture propagation in Deformable porous media with the cohesive crack model. Finite Elm. Anal. Des (Vol.73, pp. 77-95).
[12] Haddad, M.; Sepehrnoori, K. (2014). Simulation of Multiple-Stage Fracturing in Quasibrittle Shale Formations Using Pore Pressure Cohesive Zone Model.
[13] Saberhosseini, S. E.; Keshavarzi, R.; Ahangari, K. (2017). A fully coupled threedimensional hydraulic fracture model to investigate the impact of formation rock mechanical properties and operational parameters on hydraulic fracture opening using cohesive elements method. Arab. J. Geosci (Vol. 10, no. 7)
[14] چیتی، نوید; پاک، علی. (1396). بررسی میزان تأثیر پارامترهای ژئومکانیکی بر شکاف هیدرولیکی در مخازن نفت با مدل‌سازی عددی. پایان‌نامه منتشر نشده کارشناسی ارشد، دانشگاه صنعتی شریف، دانشکده عمران، گروه ژئوتکنیک.
[15] سلیقه دوست، مصطفی; پاک، علی. (1398). ارزیابی اثر عوامل هیدرومکانیکی در روشهای متعارف تحلیل شکاف هیدرولیکی در مخازن نفت. پایان‌نامه منتشر نشده کارشناسی ارشد، دانشگاه صنعتی شریف، دانشکده عمران، گروه ژئوتکنیک.
[16] اسفندیاری، مصطفی; پاک، علی. (1399). ارزیابی اثر عوامل هیدرومکانیکی و ژئومکانیکی در روش‌های متعارف تحلیل شکافت هیدرولیکی در مخازن نفت. پایان نامه منتشر نشده کارشناسی ارشد، دانشگاه صنعتی شریف، دانشکده عمران، گروه ژئوتکنیک.
[17] Harper, P. W.; Hallett, S. R. (2008). Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech (Vol. 75, no. 16, pp. 4774–4792).
[18] Geertsma, J.; De Klerk, F. (2007). A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures. J. Pet. Technol. (Vol. 21, no. 12, pp. 1571–1581).
[19] Perkins, T. K.; Kern, L. R. (2007). Widths of Hydraulic Fractures. Journal of Petroleum Technology (Vol. 13, no. 09, pp. 937–949).
[20] Nordgren, R. P. & et.al. (1972). Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal (Vol. 12, no. 04, pp. 306–314).
[21] Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics (p. 55-129).
[22] Abaqus User’s Manual, Version 6.14, Dassault Systèmes Simulia Corp., Providence, RI. 2018.
[23] Deb, Paromita; Salimzadeh, Saeed; Vogler, Daniel; Düber, Stephan; Clauser, Christoph; Settgast, Randolph R. (2021). Verification of Coupled Hydraulic Fracturing Simulators Using Laboratory‑Scale Experiments. Journal of Rock Mechanics and Rock Engineering (vol. 54, p. 2881–2902).
[24] Ren, Qingshan; Jiang, Yaodong; Wang, Pengpeng; Wu, Guangjie; Noraei Danesh, Nima. (2021). Experimental and Numerical Simulation Study of Hydraulic Fracture Propagation during Coalbed
Methane Development. Journal of Geofluids (vol. 2021, 12 pages).
[25] Zhang, Luqing; Zhou, Jian; Braun, Anika; Han, Zhenhue. (2017). Investigation of Processes of Interaction between Hydraulic and Natural Fractures by PFC Modeling Comparing against Laboratory Experiments and Analytical Models. Journal of Energies (vol. 2017, 18 pages).
[26] Bobrova, Maria; Stanchits, Sergey; Shevtsova, Anna; Filev, Egor; Stukachev, Vladimir. (2021). Journal of Geosciences (11, 292. https://doi.org/10.3390/ geosciences11070292).