Geomechanical modelling and cap-rock integrity of one of the southwest Iranian giant carbonate oil field

Document Type : Original Article

Authors

1 PhD student; Faculty of Mining Eng., Sahand University of Technology, Tbriz,, Iran

2 Faculty member, , Mining Engineering Department,, Sahand University of Technology,

3 Ahwaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahwaz, IRAN

4 Petroleum Engineering Department, SeaLand Engineering and Well Services (SLD), Tehran, Iran

Abstract

Geomechanical modeling and simulation are introduced to accurately determine the combined effects of hydrocarbon production-injection scenarios and changes in rock properties due to geomechanical effects. Pore pressure and stress states vary during production and injection steps. These variations considerably affect reservoir and cap-rock integrity, faults reactivation, formation compaction and uplifting, and wellbore stability. Therefore, accurate pore pressure estimation is essential to maintain optimal conditions during injection and production operations. A series of data, including rock mechanical test data, well logs data, formation dynamic tester data, image logs data, leak-off tests (LOTs), drilling events, and regional geological studies were used in this work. In this study, a coupled geomechanical-fluid flow model was constructed to evaluate the cap-rock integrity during the injection-production scenario. The steps of the investigation are data audit, 1-D mechanical modeling (MEMs), 3D rock mechanical properties modeling, and 4D geomechanical simulation using a one-way coupling method. The results showed that throughout the production and injection scenario, the cap-rock was stable. Since there is a long distance between Mohr's circle and the envelope, the cap-rock will not fail. Due to the low permeability of the cap-rock, there is no connection between its pore spaces, which leads to ignoring the variation in stress state due to variations in reservoir pressure.

Keywords


[1] Deflandre, J. P., Estublier, A., Baroni, A., Fornel, A., Clochard, V., & Delépine, N. (2013). Assessing field pressure and plume migration in CO2 storages: application of case-specific workflows at in Salah and Sleipner. Energy Procedia, 37, 3554-3564. ‏
[2] Zhou, X., & Burbey, T. J. (2014). Distinguishing fluid injection induced ground deformation caused by fracture pressurization from porous medium pressurization. Journal of Petroleum Science and Engineering, 121, 174-179. ‏
[3] Selvadurai, A. P. S., & Kim, J. (2016). Poromechanical behaviour of a surficial geological barrier during fluid injection into an underlying poroelastic storage formation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2187), 20150418. ‏
[4] Ezati, M., Azizzadeh, M., Riahi, M. A., Fattahpour, V., & Honarmand, J. (2020). Wellbore stability analysis using integrated geomechanical modeling: a case study from the Sarvak reservoir in one of the SW Iranian oil fields. Arabian Journal of Geosciences, 13(4), 1-19. ‏
[5] Chan, A. W., & Zoback, M. D. (2002, October). Deformation analysis in reservoir space (DARS): a simple formalism for prediction of reservoir deformation with depletion. In SPE/ISRM Rock Mechanics Conference. OnePetro. ‏
[6] Zivar, D., Foroozesh, J., Pourafshary, P., & Salmanpour, S. (2019). Stress dependency of permeability, porosity and flow channels in anhydrite and carbonate rocks. Journal of Natural Gas Science and Engineering, 70, 102949. ‏
[7] Rutqvist, J., Cappa, F., Rinaldi, A. P., & Godano, M. (2014). Modeling of induced seismicity and ground vibrations associated with geologic CO2 storage, and assessing their effects on surface structures and human perception. International Journal of Greenhouse Gas Control, 24, 64-77. ‏
[8] Michael, K., Avijegon, A., Ricard, L., Strand, J., Freifeld, B., Woitt, M., ... & Geeves, D. (2018). The South West Hub In-Situ Laboratory–a facility for CO2 injection testing and monitoring in a fault zone. ‏
[9] Song, J., & Zhang, D. (2013). Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environmental science & technology, 47(1), 9-22. ‏
[10] Streit, J. E., & Hillis, R. R. (2004). Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29(9-10), 1445-1456. ‏
[11] Bond, C. E., Wightman, R., & Ringrose, P. S. (2013). The influence of fracture anisotropy on CO2 flow. Geophysical Research Letters, 40(7), 1284-1289. ‏
[12] Heffer, K. J., Koutsabeloulis, N. C., & Wong, S. K. (1994, August). Coupled geomechanical, thermal and fluid flow modelling as an aid to improving waterflood sweep efficiency. In Rock mechanics in petroleum engineering. OnePetro. ‏
[13] Fredrich, J. T., Arguello, J. G., Thorne, B. J., Wawersik, W. R., Deitrick, G. L., De Rouffignac, E. P., ... & Bruno, M. S. (1996, October). Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge Diatomite. In SPE annual technical conference and exhibition. OnePetro. ‏
[14] Fredrick, J. T., Deitrick, G. L., Arguello, J. G., & DeRouffignac, E. P. (1998, July). Reservoir compaction, surface subsidence, and casing damage: a geomechanics approach to mitigation and reservoir management. In SPE/ISRM rock mechanics in petroleum engineering. OnePetro. ‏
[14] Settari, A., Sullivan, R.B., Walters, D.A., Wawrzynek, P. A., 2002. 3D analysis and prediction of microseismicity in fracturing by coupled geomechanical modeling. In SPE gas technology symposium. OnePetro.
[15] Sayers, C. M., Den Boer, L., Lee, D. W., Hooyman, P. J., & Lawrence, R. P. (2006, August). Predicting reservoir compaction and casing deformation in deepwater turbidites using a 3D mechanical earth model. In International oil conference and exhibition in Mexico. OnePetro. ‏
[16] Qiu, K., Yamamoto, K., Birchwood, R. A., Chen, Y. R., Wu, C., Tan, C. P., & Singh, V. (2012, April). Evaluation of fault re-activation potential during offshore methane hydrate production in Nankai Trough, Japan. In Offshore technology conference. OnePetro.‏.
[17] Qiu, K., Yamamoto, K., Birchwood, R., & Chen, Y. (2015). Well-integrity evaluation for methane-hydrate production in the deepwater Nankai Trough. SPE drilling & completion, 30(01), 52-67. ‏
[18] Correa, A. C. F., Newman, R. B., Naveira, V. P., de Souza, A. L. S., Araujo, T., da Silva, A. A. C., ... & Meurer, G. B. (2013, October). Integrated modeling for 3D geomechanics and coupled simulation of fractured carbonate reservoir. In Otc Brasil. OnePetro. ‏
[19] Yang, X., Pan, Y., Fan, W., Huang, Y., Zhang, Y., Wang, L., ... & Shan, F. (2018). Case study: 4D coupled reservoir/geomechanics simulation of a high-pressure/high-temperature naturally fractured reservoir. SPE Journal, 23(05), 1518-1538. ‏
[20] Ahmed, B. I., & Al-Jawad, M. S. (2020). Geomechanical modelling and two-way coupling simulation for carbonate gas reservoir. Journal of Petroleum Exploration and Production Technology, 10(8), 3619-3648. ‏
[21] Kim, J. (2010). Sequential methods for coupled geomechanics and multiphase flow. Stanford University. ‏
[22] Mikelić, A., Wang, B., & Wheeler, M. F. (2014). Numerical convergence study of iterative coupling for coupled flow and geomechanics. Computational Geosciences, 18(3), 325-341. ‏
[23] Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of Science, 304(1), 1-20.
[24] FALCON, N. L. (1961). Major earth-flexuring in the Zagros Mountains of south-west Iran. Quarterly Journal of the Geological Society, 117(1-4), 367-376. ‏
[25] Motiei, H. (1993). Geology of Iran; Zagros Stratigraphy. Geological Society of Iran Publications. ‏
[26] Darvishzadeh, A. (2009). Geology of Iran: stratigraphy, tectonic, metamorphism, and magmatism. Amir kabir, Tehran. ‏
[27] James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG bulletin, 49(12), 2182-2245. ‏
[28] Nairn, A. E. M., & Alsharhan, A. S. (1997). Sedimentary basins and petroleum geology of the Middle East. Elsevier.
[29] Fjaer, E., Holt, R. M., Horsrud, P., & Raaen, A. M. (2008). Petroleum related rock mechanics. Elsevier. ‏
[30] Zoback, M. D. (2007). Reservoir Geomechanics/Cambridge, New York, Melbourne: Cambridge University Press. ‏
[31] Lacy, L. L. (1997, October). Dynamic rock mechanics testing for optimized fracture designs. In SPE annual technical conference and exhibition. OnePetro. ‏
[32] Ameen, M. S., Smart, B. G., Somerville, J. M., Hammilton, S., & Naji, N. A. (2009). Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 26(4), 430-444. ‏
[33] Asef, M. R., & Farrokhrouz, M. (2010). Governing parameters for approximation of carbonates UCS. Electron J Geotech Eng, 15(2010), 1581-1592.
[34] Seyedsajadi, S., & Aghighi, M. A. (2015). Construction and Analysis of a Geomechanical Model for Bangestan Reservoir in Koopal Field. Iranian Journal of Mining Engineering, 10(26), 21-34. ‏
[35] Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics. John Wiley & Sons. ‏
[36] Plumb, R. A. (1994). Influence of composition and texture on the failure properties of clastic rocks. Rock Mechanics in Petroleum Engineering. Society of Petroleu m Engineers.
[37] Eaton, B. A. (1975, September). The equation for geopressure prediction from well logs. In Fall meeting of the Society of Petroleum Engineers of AIME. OnePetro.‏
[38] Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., ... & Cocks, L. R. M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3-4), 325-368. ‏
[39] Azadpour, M., & Shad Manaman, N. (2015). Determination of pore pressure from sonic log: a case study on one of Iran carbonate reservoir rocks. Iranian Journal of Oil and Gas Science and Technology, 4(3), 37-50. ‏
[40] Kidambi, T., & Kumar, G. S. (2016). Mechanical earth modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. Journal of Petroleum Science and Engineering, 141, 38-51. ‏
[41] Tabaeh, H. M., & Mohammad, A. (2016). Estimation of in-situ horizontal stresses using the linear poroelastic model and minifrac test results in tectonically active area. Russian Journal of Earth Sciences, 16(4), 1-9. ‏
[42] Krief, M., Garat, J., Stellingwerff, J., & Ventre, J. (1990). A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). The Log Analyst, 31(06).‏
[43] Rutqvist, J., Birkholzer, J., Cappa, F., & Tsang, C. F. (2007). Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management, 48(6), 1798-1807. ‏
[44] Tillner, E., Shi, J. Q., Bacci, G., Nielsen, C. M., Frykman, P., Dalhoff, F., & Kempka, T. (2014). Coupled dynamic flow and geomechanical simulations for an integrated assessment of CO2 storage impacts in a saline aquifer. Energy Procedia, 63, 2879-2893. ‏
[45] Tran, D., Nghiem, L., & Buchanan, L. (2005, November). An overview of iterative coupling between geomechanical deformation and reservoir flow. In SPE international thermal operations and heavy oil symposium. OnePetro. ‏‏
[46] Wang, C., Wu, Y. S., Xiong, Y., Winterfeld, P. H., & Huang, Z. (2015, February). Geomechanics coupling simulation of fracture closure and its influence on gas production in shale gas reservoirs. In SPE reservoir simulation symposium. OnePetro. ‏
[47] Kim, S., & Hosseini, S. A. (2014). Geological CO2 storage: Incorporation of pore-pressure/stress coupling and thermal effects to determine maximum sustainable pressure limit. Energy Procedia, 63, 3339-3346. ‏
[48] van Thienen-Visser, K., Pruiksma, J. P., & Breunese, J. N. (2015). Compaction and subsidence of the Groningen gas field in the Netherlands. Proceedings of the International Association of Hydrological Sciences, 372, 367-373.