تاثیر شرایط بارگذاری و تعداد گلوله خرج گود بر کارآیی مشبک کاری با گلوله‌ خرج گود

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی معدن، مکانیک سنگ، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، ایران

چکیده

عملیات مشبک‌کاری با خرج گود شامل ایجاد یک سوراخ در لوله جداری، سیمان پیرامون آن و سازند بهره‌ده به‌منظور ایجاد ارتباط بین مخزن و چاه نفت است. عوامل متعددی بر کارآیی و عمق نفوذ مشبک‌کاری تأثیرگذار است. در این میان نقش تنش سه‌محوره واقعی زمین، نوع بارگذاری و تعداد گلوله­‌ها بر روی کارآیی مشبک‌کاری به‌خوبی بررسی نشده است. بنابراین یک دستگاه بزرگ‌مقیاس جهت مشبک‌کاری نمونه­‌های بلوک تحت شرایط سه‌محوره واقعی طراحی و ساخته شد. در این مطالعه برای بهینه‌سازی تعداد آزمایش­‌های بزرگ‌مقیاس، از روش طرح آزمایش تاگوچی بهره‌مند شده و سهم هر کدام از تنش­‌های برجا بر روی عمق نفوذ با استفاده از تحلیل آماری نتایج، معین شد. آزمون­‌های این پژوهش، شرایط مشبک‌کاری در چاه­‌های عمودی و افقی در حوزه‌­های گسلش به ترتیب امتدادلغز و معکوس را شبیه‌سازی می­‌کند. نتایج نشان داد که عمق نفوذ در شرایط سطحی حداکثر است. تنش موازی با محور شلیک کمترین تأثیر را در کاهش عمق نفوذ دارد. عمق نفوذ گلوله در شرایط دوبعدی متناظر از حالت بارگذاری سه‌بعدی رایج بیشتر و هر دو آنها عمق نفوذ بیشتری نسبت به حالت بارگذاری سه محوره واقعی بدست می­‌دهند. در مشبک‌کاری با گان، عمق نفوذ گلوله اول از گلوله­‌های دوم و سوم با اختلاف زیادی کمتر است. شلیک گلوله باعث ایجاد یک سوراخ مشبک‌کاری و تعدادی ترک کششی در اطراف آن می­‌گردند. الگوی انتشار ترک­‌های کششی به نوع بارگذاری بستگی دارد. تعداد ترک­‌های کششی ایجاد شده در اطراف سوراخ مشبک‌کاری در سنگ آهک نسبت به بتن به مراتب بیشتر است. روند کاهش قطر در سوراخ اول نسبت به دوم متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of loading condition and the nmber of shaped charges on the perforation performane.

نویسنده [English]

  • Peyman Norouzi
Department of Mining Engineering (Rock Engineering), Faculty of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

The perforating operation with the shaped charged includes creating a hole in the casing, and the cement around it, and the production formation in order to create a connection between the reservoir and the oil well. Several factors affect the efficiency and depth of penetration of perforation. The role of the real triaxial stress, loading condition and the number of chaped chrages on the efficiency of perorating has not been well investigated. Therefore, a large-scale device for perforate block samples under real three-axis conditions was designed and made. In this study, in order to optimize the number of large-scale tests, the Taguchi test design method was used and the contribution of each of the insitu stresss on the penetration depth was determined using the statistical analysis of the results. The results simulate the conditions of n-situ stresses on vertical and horizontal wells in the fault zones, respectively, strike-slip and reverse. The results showed that the depth of penetration is maximum in surface conditions. The stress parallel to the firing axis has the least effect in reducing the depth of penetration. In the gun peroration, the penetration depth of the first charge is much lower than the second and third ones. The shaped charges made a hole and some tensile cracks around it. The propagation pattern of tensile cracks depends on loading condiion. The number of tensile cracks created around the hole in limestone is much higher than in concrete. The diameter rduction along the first & second hole is different.

کلیدواژه‌ها [English]

  • "Shaped Charge
  • Depth of Penetration
  • Loading Condition
  • True Triaxial stress
  • insitu stress"
[1] API RP 43. (1991). Recommended Practice Standard Procedure for Evaluation of Well   Perforators.. Washington, DC: API.
[2] API RP 19B. (2014).  Recommended Practice for Evaluation of Well  Perforators.. Washington, DC: API.
[3] Aseltine, C.L. (1985). Flash X-Ray Analysis of the Interaction of Perforators With Different Target Materials. Presented at the SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, 22-26 September. SPE-14322-MS. https:/ /doi.org/10.2118/14322-MS.
[4] Behrmann, L.A., and Halleck P.M. (1988a). Effect of Concrete and Berea Strengths on Perforator Performance and Resulting Impact on the New API RP 43. Presented at the  SPE Annual Technical Conference and Exhibition, Houston, Texas, 2-5 October, SPE-18242-MS. https://doi.org/10.2118/18242-MS.
[5] Behrmann, L.A., and Halleck P.M. (1988b). Effects of Wellbore Pressure on Perforator Penetration Depth. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 2-5 October. SPE-18243-MS. https://doi. org/10.2118/18243-MS.
[6] Bird, K., and Blok, R.H.J. (1996). Perforating in Tight Sandstones: Effect of Pore Fluid and Underbalance. Presented at the SPE European Petroleum Conference, Milan, Italy, 22-24 October.SPE-36860-MS. https://doi.org /10.2118/ 36860-MS.
[7] Brooks, J.E., Yang, W., and Behrmann. L.A. (1998). Effect of Sand-Grain Size on Perforator Performance. Presented at the SPE Formation Damage Control Conference, Lafayette, Louisiana, 18-19 February. SPE-39457-MS. https://doi.org/ 10.2118/39457-MS.
[8] Casero, A., Nicolaysen A., Rylance M., et al. (2017). The Importance of Being Well Connected-High Rate Fracs in Horizontals. Presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition,The Woodlands, Texas, USA, 24–26 January. SPE-184813-MS.  https://doi.org/10. 2118/184813-MS.
[9] Deisman, N., Soderberg, H., Lang, P. et al. (2013). Cased Wellbore Tools for Sampling and In-Situ Testing of Cement/Formation Flow Properties. International Journal of Greenhouse Gas Control.16: 62-69. https://doi.org/10.1016/j.ijggc. 2013.02.004.
[10] Elshenawy, T., and Li, Q.M. (2013). Influences of Target Strength and Confinement on the Penetration Depth of an Oil Well Perforator. International Journal of Impact Engineering 54: 130-137.https://doi.org/10.1016/j.ijimpeng.2 012. 10 .010.
[11] Gladkikh, M., LeCompte, B., Harvey, W. et al.(2009). Combining the Prediction of Penetration Depth of Downhole Perforators with the Depth of Invasion. Presented at the SPE European Formation Damage Conference, Scheveningen, Netherlands, 27-29 May. SPE-122319-MS. https://doi.org/10.2118/122319-MS.
[12] Grove, B., Heiland, J., Walton, I. et al. (2008). New Effective Stress Law for Predicting Perforation Depth at Downhole Conditions. SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, 13-15 February. SPE 111778-MS.https://doi. org/10.2118/111778-MS.
[13] Gupta, V., Pandey P.M., Mohinder P.G. et al. (2014). Minimization of Kerf Taper Angle and Kerf Width Using Taguchi's Method in Abrasive Water Jet Machining of Marble. Procedia Materials Science 6: 140-149.  https://doi.org/1 0.1016/j.mspro.2014.07.017.
[14] Halleck, P. M., Karacan, C.O., Hardesty, J. et al. (2004). Changes in Perforation-Induced Formation Damage with Degree of Underbalance: Comparison of Sandstone and Limestone Formations. Presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, 18-20 February. SPE-86541-MS. https://doi.org/10.2118/86541-MS.
[15] Halleck, P.M., Wesson, D.S., Snider, P.M. et al. (1991). Prediction of In-Situ Shaped Charge Penetration Using Acoustic and Density Logs. Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 6-9 October. https://doi.org/10.2118/22808-MS.
[16] Halleck, P.M., (1994). Further Effect of Stress on Penetration and Flow Performance of Jet Perforators. API Project 87-36.
[17] Halleck, P.M., and Behrmann, L.A. (1990). Penetration of Shaped Charges in Stressed Rock. American Rock Mechanics Association. Presented at the Symposium on Rock Mechanics (USRMS), Golden, Colorado, 18-20 June, ARMA-90-0629.
[18] Halleck, P. M., Saucier, R. J., Behrmann, L. A. et al. (1988). Reduction of Jet Perforator Penetration in Rock Under Stress. Presented at the SPE Annual Technical Conference and Exhibition, Houston,Texas, 2-5 October. SPE-18245-MS. https://doi.org/10.2118/18245-MS.
[19] Harris, M.H. (1966). The Effect of Perforating Oil Well Productivity. Journal of Petroleum Technology 18 (04): S518-S528. SPE-1236-PA. https://doi.org/10.2118/1236-PA.
[20] Hong, K.C. (1975). Productivity of Perforated Completions in Formations with or without Damage. Journal of Petroleum Technology. 27 (08): 1027-1038. SPE-4653-PA. https://doi.org/ 10.2118/4653-PA.
[21] Jeyapaul, R., Shahabudeen, P., and Krishnaiah, K., (2005). Quality Management Research by Considering Multi-Response Problems in the Taguchi Method – a Review. The International Journal of Advanced Manufacturing Technology. 26 (11–12): 1331–1337. Doi:10.1007/ s00170-004-2102-y.
[22] Karacan, C.O., and Halleck, P.M. (2003). Comparison of Shaped-Charge Perforating Induced Formation Damage to Gas-and Liquid-Saturated Sandstone Samples. Journal of Petroleum Science and Engineering 40 (1–2): 61-75. https://doi.org/10.1016/S0920-4105(03)00084-6.
[23] King, G.E., Bingham, M.D., and Kidder, R.W. (1986). Factors Affecting Perforating Charge Performance and Relationship to Port Plug Condition. SPE Production Engineering 1 (05): 379-387. SPE-13128-PA. https://doi.org/10.211 8/13128-PA.
[24] Klotz, J.A., Krueger R.F., and Pye, D.S. (1974). Effect of Perforation Damage on Well Productivity. Journal of Petroleum Technology 26 (11): 303-314. SPE-4654-PA. https://doi.org 10.2118/4654-PA.
[25] Ott, R. and Bell, W., (1994). Simple Method Predicts Downhole Shaped-Charge Gun Performance (includes associated papers 29332 and 30069). SPE Production & Facilities, 9(03): 171-178. SPE 27424-PA. https://doi.org/10. 2118/27424-PA.
[26] Pucknell, J.K., and Behrmann, L.A. (1991). An Investigation of the Damaged Zone Created by Perforating. Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 6-9 October. SPE-22811-MS. https://doi. org/ 10.2118/22811-MS.
[27] Renpu, W. (2011). Perforating In Advanced well completion engineering. 3th edition. Gulf Professional Publishing. Chapter.6: 295-363.
[28] Romero, J., Mack, M. G., and Elbel, J. L.(2000). Theoretical Model and Numerical Investigation of Near-Wellbore Effects in Hydraulic Fracturing. SPE Production & Facilities,15 (02): 76-82. SPE-63009-PA. https://doi.org/10.2118/63009-PA.
[29] Ross, P.J., (1996). Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. 2nd edition. McGraw-Hill Press, New York. USA. 333.
[30] Sarmadivaleh, M., Nabipour A., Asadi M.S. et al. (2010)  Identification of Porosity Damaged Zones around a Perforation Tunnel Based on DEM Simulation. Presented at the ISRM International Symposium, New Delhi, India 23-27 October. ISRM-ARMS6-2010-041.
[31] Sadeghi, S.H., Moosavi, V., Karami, A. et al. (2012). Soil Erosion Assessment and Prioritization of Affecting Factors at Plot Scale Using the Taguchi Method. J. Hydrol. 448, 174–180. https://doi .org/10.1016/j.jhydrol.2012.04.038.
[32] Saucier, R.J, and Lands J.F. Jr. (1978). A Laboratory Study of Perforations in Stressed Formation Rocks. Journal of Petroleum Technology 30 (09): 1347-1353. SPE-6758-PA. https://doi.org/ 10.2118/6758-PA
[33] Sharma. M.M. (2000). The Nature of the Compacted Zone Around Perforation Tunnels. Presented at the SPE International Symposium on Formation Damage Control, Lafayette, Louisiana, 23-24 February. SPE-58720-MS. https://doi.org /10.2118/58720-MS.
[34] Smith, P.S. Behrmann, L.A., and Yang, W. (1997). Improvement in Perforating Performance in High Compressive Strength Rocks. Presented at the SPE European Formation Damage Conference, The Hague, Netherlands, 2-3 June. SPE-38141-MS  https://doi.org/10.2118/38141-MS.
[35] Taguchi, G., (1990). Introduction to Quality Engineering. McGraw-Hill, New York, USA, p. 191.
[36] Thompson, G.D. (1962). Effects of Formation Compressive Strength on Perforator Performance. American Petroleum Institute, Drilling and Production Practice, 01 January, New York. API-62-191.
[37] Turgut, E., Gülşah Ç., and Cengiz Y. (2012). Optimization of the Concentric Heat Exchanger with Injector Turbulators by Taguchi method. Energy Conversion and Management 53 (1): 268-275. https://doi.org/10.1016/j.enconman.2011.09.011.
[38] Van Gijtenbeek, K. A. W., and Pongratz, R. (2004). Perforating and Hydraulic Proppant Fracturing in Western Siberia, Russia. Presented at the SPE Annual Technical Conference and Exhibition, 26-29 September, Houston, Texas. SPE-90238-MS. https://doi.org/10.2118/90238-MS.
[39] Wang, T.Y., and  Huang, C.Y. (2007). Improving Forecasting Performance by Employing the Taguchi Method. European Journal of Operational Research.176 (2): 1052–1065. https://doi.org/10.1016/j.ejor.2005.08.020.
[40] Weeks, S.G., (1974). Formation Damage or Limited Perforating Penetration? Test-Well Shooting May Give a Clue. Journal of Petroleum Technology. 26 (09): 979-984. SPE-4794-PA. https://doi. org/10.2118/4794-PA.
[41] Yew, C. H., Mear, M. E., Chang, C. C. et al. (1993). On Perforation and Fracturing of Deviated
 [42] Cased Wellbores. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 3-6 October. SPE-26514-MS. https://doi.org/10.2118/26514-MS.
[43] Yizong, T., Zulkifli M.A., and Khalil, A.M. (2017). Influence of Processing Parameters on Injection Molded Polystyrene Using Taguchi Method as Design of Experiment. Procedia Engineering 184. 350-359. https://doi.org/10.1 016/j.proeng.2017.04.105.
[44] Zhang, F.B., Wang Z.L., and Yang, M.Y. (2015). Assessing the Applicability of the Taguchi Design Method to an Interrill Erosion Study. Journal of Hydrology 521. 65-73. https://doi.org /10.1016/j.jhy drol.2014.11.059.
[45] Zoback, M.D., (2010). Reservoir Geomechanics. Cambridge University Press. New York.