مدل‌سازی حوزه زمان امواج لرزه‌ای در محیط‌های ویسکوآکوستیک با توپوگرافی نامنظم و چگالی متغیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه ژئوفیزیک دانشگاه تهران

2 دانشکده مهندسی عمران دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

مدل‌سازی انتشار موج لرزه‌ای، از گام‌های کلیدی در تصویرسازی لرزه‌ای، نقش مهمی در مطالعات ژئومکانیک نفت بر مبنای تصویرسازی غیرمخرب زیرسطحی ایفا می‌کند. دقیق‌ترین روش‌های تصویرسازی غیرمخرب لرزه‌ای نیازمند مدل‌سازی لرزه‌ای بر اساس حل عددی معادله مشتق جزئی انتشار موج هستند. در حالت ساده‌تر، این معادله در شرا یط چگالی ثابت و در محیط آکوستیک حل می‌شود. مطالعات بسیاری با هدف توسعه روش‌های مدل‌سازی برای وارد کردن ملاحظات شرایط واقعی انجام می‌پذیرند. یکی از این ملاحظات، که اهمیت شایانی در مطالعات ژئومکانیک در خشکی دارد، در نظر گرفتن توپوگرافی در مدل‌سازی است. در این پژوهش، ما از روش مرزی غوطه‌ور با هدف حل معادله انتشار موج در محیط‌های با توپوگرافی پیچیده در حوزه زمان استفاده کردیم، و این روش را برای انتشار موج در محیط ویسکوآکوستیک و در حضور چگالی متغیر توسعه دادیم. معادله انتشار موج در محیط‌های ویسکوآکوستیک، به دلیل وجود سازوکار جذب (اتلاف و پاشش)، معادله‌ای مختلط بوده که حل آن در حوزه زمان بسیار چالش برانگیز است. در این مطالعه، یکی از نوین‌ترین روش‌ها برای وارد کردن اثر جذب در انتشار موج در حوزه زمان استفاده شده است. درنهایت عملکرد روش توسعه یافته در این مطالعه، با مدل‌سازی انتشار موج در محیط‌های ویسکوآکوستیک با توپوگرافی پیچیده و چگالی متغیر مورد بررسی و آزمایش قرار گرفته است، که اثر کاهش دامنه در اثر جذب در محیط ویسکوآکوستیک به وضوح مشهود بوده و دامنه میدان موج ویسکوآکوستیک مدل‌سازی شده در محل توپوگرافی مطابق انتظار مقدار صفر دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Time domain modeling of seismic waves in visco-acoustic media with variable density and topography

نویسندگان [English]

  • Saeed Rahmati 1
  • Toktam Zand 2
  • Ali Gholami 1
  • Hamidreza Siahkoohi 1
1 Institute of Geophysics, University of Tehran
2 Faculty of Civil engineering, K. N. Toosi University of Technology
چکیده [English]

Seismic wave propagation modeling, one of the key steps in seismic imaging, plays an important role in oil geomechanics studies based on subsurface non-destructive imaging. Two of the most accurate non-destructive seismic imaging methods are full waveform inversion (FWI), and least squares reverse time migration (LSRTM). Since the general approach of these methods to recover geomechanical properties is based on minimization of data residuals, an accurate forward modeling operator makes the inversion results independent from the modeling errors. Seismic modeling is based on the numerical solution of the partial differential equation of wave propagation using methods such as finite difference or finite element. In the simplest case, this equation is solved under conditions of constant density and for an acoustic medium. Different methods have been conducted to develop modeling methods by considering real conditions. One of these considerations, which has a significant impact in geomechanics onshore studies, is the topography. In this research, we used the immersion boundary method to solve the wave equation in the time domain in environments with complex topography, and we developed this method for wave propagation in a visco-acoustic medium with variable density. In visco-acoustic environments, including the effect of absorption (dispersion and dissipation) in modeling, requires the complex wave equation, which is challenging to solve in the time domain. In this study, a novel method is used to incorporate the effect of absorption in wave propagation in the time domain. Finally, the performance of the proposed method is investigated by modeling the wave propagation in visco-acoustic models with complex topography and variable density.

کلیدواژه‌ها [English]

  • Non-Destructive Imaging
  • Seismic Modeling
  • Visco-Acoustic
  • Topography
  • Finite Difference
[1] Mulder, W. A., & Huiskes, M. J. (2017). A simple finite-difference scheme for handling topography with the first-order wave equation. Geophysical Journal International, 210(1), 482-499.
[2] Kosloff, D. D., & Baysal, E. (1982). Forward modeling by a Fourier method. Geophysics, 47(10), 1402-1412.
[3] Marfurt, K. J. (1984). Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 49(5), 533-549.
[4] Kelly, K. R., Ward, R. W., Treitel, S., & Alford, R. M. (1976). Synthetic seismograms: A finite-difference approach. Geophysics, 41(1), 2-27.
[5] O'Malley, B., Kópházi, J., Eaton, M. D., Badalassi, V., Warner, P., & Copestake, A. (2018). Pyramid finite elements for discontinuous and continuous discretizations of the neutron diffusion equation with applications to reactor physics. Progress in Nuclear Energy, 105, 175-184.
[6] Alford, R. M., Kelly, K. R., & Boore, D. M. (1974). Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6), 834-842.
[7] Liu, Y., & Sen, M. K. (2009). An implicit staggered-grid finite-difference method for seismic modelling. Geophysical Journal International, 179(1), 459-474.
[8] Mattsson, K., & Nordström, J. (2006). High order finite difference methods for wave propagation in discontinuous media. Journal of Computational Physics, 220(1), 249-269.
[9] Lombard, B., & Piraux, J. (2004). Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. Journal of Computational Physics, 195(1), 90-116.
[10] Muir, F., Dellinger, J., Etgen, J., & Nichols, D. (1992). Modeling elastic fields across irregular boundaries. Geophysics, 57(9), 1189-1193.
[11] Zahradník, J. Í., Moczo, P., & Hron, F. E. (1993). Testing four elastic finite-difference schemes for behavior at discontinuities. Bulletin of the Seismological Society of America, 83(1), 107-129.
[12] Peskin, C. S. (1972). Flow patterns around heart valves: a numerical method. Journal of computational physics, 10(2), 252-271.
[13] Walcott, R. I. (1970). Flexural rigidity, thickness, and viscosity of the lithosphere. Journal of Geophysical Research, 75(20), 3941-3954.
[14] Müller, T. M., Gurevich, B., & Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics, 75(5), 75A147-75A164.
[15] White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2), 224-232.
[16] Dvorkin, J. P., & Mavko, G. (2006). Modeling attenuation in reservoir and nonreservoir rock. The Leading Edge, 25(2), 194-197.
[17] Yang, J., & Zhu, H. (2018). A time-domain complex-valued wave equation for modelling visco-acoustic wave propagation. Geophysical journal international, 215(2), 1064-1079.
[18] Zhu, T., Harris, J. M., & Biondi, B. (2014). Q-compensated reverse-time migration. Geophysics, 79(3), S77-S87.
[19] Berrut, J. P., & Trefethen, L. N. (2004). Barycentric lagrange interpolation. SIAM review, 46(3), 501-517.
[20] Li, X., Yao, G., Niu, F., & Wu, D. (2020). An immersed boundary method with iterative symmetric interpolation for irregular surface topography in seismic wavefield modelling. Journal of Geophysics and Engineering, 17(4), 643
[21] Aki, K., & Richards, P. G. (1980). Quantative seismology: Theory and methods. Quantative Seismology: Theory and Methods. by K. Aki and PG Richards. San Francisco: Freeman
[22] Zhu, T., & Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105-T116.
[23] Carcione, J. M. (2010). A generalization of the Fourier pseudospectral method. Geophysics, 75(6), A53-A56