شناسایی توانمندی‌های فناورانه ژئومکانیک در صنعت نفت و گاز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت تکنولوژی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار گروه مدیریت تکنولوژی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 گروه مدیریت آموزش عالی، دانشکده مدیریت و اقتصاد، دانشگاه ازاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

چکیده

ژئومکانیک در بهینه‌سازی تحلیل پدیده‌های مکانیکی هنگام حفاری، اکتشاف، تولید و حتی رهاسازی یک میدان نفتی تاثیر بسزایی دارد. شناسایی توانمندی‌های فناورانه ژئومکانیک در صنعت نفت و گاز ایران در بهسازی فرایند اکتشاف و تولید موثر می‌باشد. ازاین‌رو، پژوهش حاضر با استفاده از رویکرد کیفی چند روشی (تحلیل مضمون و دلفی خاکستری) مضامین پایه، سازمان‌دهنده و فراگیر مرتبط را استخراج و دسته‌بندی و تفسیر نموده است. براین اساس، نخست مصاحبه‌های تخصصی نیمه‌ساختاریافته‌‌ با 14 نفر از مدیران و متخصصان صنعتی و دانشگاهی انجام و با استفاده از رویکرد تحلیل مضمون مبتنی بر راهبرد استقرایی، توانمندی‌های فناورانه در حوزه ژئومکانیک نفت و گاز در 7 مضمون سازمان‌دهنده و 34 مضمون پایه شناسایی و دسته‌بندی شدند. مضامین سازمان‌دهنده شامل توانمندی سرمایه‌گذاری با 4 مضمون پایه، توانمندی پیوند/ شبکه‌سازی با 5 مضمون پایه، توانمندی یادگیری با 6 مضمون پایه، توانمندی منابع انسانی با 4 مضمون پایه، توانمندی مدیریت و استراتژیک با 7 مضمون پایه، توانمندی فنی، اجرایی با 4 مضمون پایه، توانمندی مکمل با 4 مضمون پایه تشکیل شده است. سپس، پرسشنامه دلفی خاکستری در بین 41 نفر از خبرگان ژئومکانیک توزیع گردید و اهمیت هر یک از معیارها تعیین گردید. مضامین به ترتیب اهمیت در پنج کلاس دسته‌بندی شدند. باورپذیری در مدیران ارشد، وجود برنامه راهبردی کلان و دسترسی به منابع اعتباری کافی از بالاترین اهمیت برخوردار شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the technological capabilities of geomechanics in the oil and gas industry

نویسندگان [English]

  • Maryam Behifar 1
  • Mohammadreza Razavi 2
  • Parivash Jaafari 3
1 Department of Technology Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Technology Management, Islamic Azad University, Tehran, Iran
3 Department of Educational Administration, School of Management and Economics, Islamic Azad University, University, Science and Research Branch, Tehran, Iran
چکیده [English]

Geoenergy has a significant effect in optimizing the analysis of mechanical phenomena during drilling, exploration, production and even release of an oil field. Identifying the technological capabilities of geomechanics in Iran's oil and gas industry is effective in improving the exploration and production process. Therefore, the current research has extracted, categorized and interpreted the basic, organizing and inclusive themes using a multi-method qualitative approach (theme analysis and gray Delphi). Therefore, first, semi-structured interviews were conducted with 14 industrial and academic managers and experts, and using the theme analysis approach based on the inductive strategy, technological capabilities in the field of oil and gas geomechanics were identified and categorized into 7 organizing themes and 34 basic themes. . The themes of the organizer include investment capability with 4 basic themes, linking/networking capability with 5 basic themes, learning capability with 6 basic themes, human resources capability with 4 basic themes, management and strategic capability with 7 basic themes, technical and executive capability with 4 themes Basic, complementary capability is formed by 4 basic themes. Then, by doing gray Delphi, these themes were classified into five classes in order of importance. Credibility in senior managers, the existence of a strategic plan and access to sufficient credit resources were of the highest importance.

کلیدواژه‌ها [English]

  • Geoenergy
  • geomechanics
  • rock mechanics
  • upstream industries
  • hydrocarbon
  • gray Delphi
[1] Tonysheva, L., Yakunina, O., & Yakunin, D. (2019). Modelling oilfield service companies strategic development: the matrix approach. Espacios, 40(30), 17.
 [2] توردو سیلوانا، وارنر مایکل، مانزانو اوسمل، انوتی یحیی ترجمه نوری بهروز، رضاپور مرتضی، علی پور یگانه رضا، (1396)، سیاست‌های بومی‌سازی در بخش نفت و گاز: از مجموعه گزارش‌های مطالعاتی بانک جهانی، تهران، پژوهشگاه صنعت نفت.
[3] Victor, D. G., Hults, D. R., & Thurber, M. C. (Eds.). (2011). Oil and governance: state-owned enterprises and the world energy supply. Cambridge University Press.
[4] Kumar, R., & Markeset, T. (2007). Development of performance‐based service strategies for the oil and gas industry: a case study. Journal of Business & Industrial Marketing, 22(4), 272-280.
[5] Van Hung, N. (2020). Overview of Geomechanics and its applications to petroleum industry–a case study for minimum overbalance pressure calculation. In CIGOS 2019, Innovation for Sustainable Infrastructure: Proceedings of the 5th International Conference on Geotechnics, Civil Engineering Works and Structures (pp. 739-744). Springer Singapore.
[6] Ghoreishian Amiri, S. A., Sadrnejad, S. A., Ghasemzadeh, H., & Montazeri, G. H. (2013). Application of control volume based finite element method for solving the black-oil fluid equations. Petroleum Science, 10, 361-372.
[7] Amiri, S. G., Sadrnejad, S. A., & Ghasemzadeh, H. (2017). A hybrid numerical model for multiphase fluid flow in a deformable porous medium. Applied Mathematical Modelling, 45, 881-899.
[8] Taheri, E., Sadrnejad, S. A., & Ghasemzadeh, H. (2015). Multiscale geomechanical model for a deformable oil reservoir with surrounding rock effects. International journal for multiscale computational engineering, 13(6).
[9] Karev, V., Kovalenko, Y., & Ustinov, K. (2020). Geomechanics of oil and gas wells. Springer.
[10] Radwan, A. E. (2022). Drilling in complex pore pressure regimes: analysis of wellbore stability applying the depth of failure approach. Energies, 15(21), 7872.
[11] Radwan, A. E. (2022). A multi-proxy approach to detect the pore pressure and the origin of overpressure in sedimentary basins: An example from the Gulf of Suez rift basin. Frontiers in Earth Science, 10, 967201.
[12] Radwan, A. E., Abudeif, A. M., Attia, M. M., Elkhawaga, M. A., Abdelghany, W. K., & Kasem, A. A. (2020). Geopressure evaluation using integrated basin modelling, well-logging and reservoir data analysis in the northern part of the Badri oil field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 162, 103743.
[13] Mirzaghorbanali, A., Fathianpour, N., Ghasemzadeh, H., & Salarian, M. (2011). A new approach in casing collapse design using the geomechanical model and heaviest drilling fluid. Petroleum science and technology, 29(18), 1948-1962.
[14] Salarian, M., Mirzaghorbanali, A., Ghasemzadeh, H., & Sadeghian, S. (2012). Well bore stability using a new dynamic model. Petroleum science and technology, 30(19), 2066-2075.
 [15] قاسم زاده, حسن, صدرنژاد, سید امیرالدین, & خدائی اردبیلی. (2017). ارایه یک مدل توام ژئومکانیکی-هیدرودینامیکی برای پیش‌بینی ماسه‌دهی. نشریه علمی ژئومکانیک نفت, 1 (1), 68-81.‎
[16] Sadrnejad, S. A., Ghasemzadeh, H., & Khodaei Ardabili, A. (2018). A Finite Element Model for Simulating Flow around a Well with Helically Symmetric Perforations. Journal of Engineering Geology, 12, 159.
[17] Radwan, A. E. (2021). Modeling pore pressure and fracture pressure using integrated well logging, drilling based interpretations and reservoir data in the Giant El Morgan oil Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 178, 104165.
[18] Al-Ajmi, A. M., & Zimmerman, R. W. (2006). Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion. International Journal of Rock Mechanics and Mining Sciences, 43(8), 1200-1211.
[19] Aadnoy, B. S., & Looyeh, R. (2019). Petroleum rock mechanics: drilling operations and well design. Gulf professional publishing.
[20] Dusseault, M. B. (1993, February). Stress changes in thermal operations. In SPE International Thermal Operations and Heavy Oil Symposium (pp. SPE-25809). SPE.
[21] Dusseault, M. B., & Gray, K. E. (1992, February). Mechanisms of stress-induced wellbore damage. In SPE International Conference and Exhibition on Formation Damage Control (pp. SPE-23825). SPE.
[22] Zoback, M. D., & Byerlee, J. D. (1976). Effect of high-pressure deformation on permeability of Ottawa sand. AAPG Bulletin, 60(9), 1531-1542.
[23] Sadrnejad, S. A., Ghasemzadeh, H., & Taheri, E. (2013). Multiscale advance features in modeling oil transport in porous media. In 21st annual international conferences on mechanical engineering, Tehran.
[24] Sadrnejad, S. A., Ghasemzadeh, H., & Taheri, E. (2014). Multiscale multiphysic mixed geomechanical model in deformable porous media. International Journal for Multiscale Computational Engineering, 12(6).
  [25] صنایع پسند, محمد, قاسم‌زاده, حسن. (2017). مدل چندمقیاسی تغییر شکل پذیر برای مخازن متخلخل نفتی با درنظر گرفتن موئینگی. نشریه علمی ژئومکانیک نفت, 1 (2), 40-59.‎
[26] Ghasemzadeh, H., & Pasand, M. S. (2019). Modeling of oil transport in porous media using multiscale method with adaptive mesh refinement. In Energy Geotechnics: SEG-2018 (pp. 475-485). Springer International Publishing.
[27] Ghasemzadeh, H. (2019). Multiscale multiphysic mixed geomechanical model for deformable porous media considering the effects of surrounding area. Oil Geomechanic, 3(1), 79-99.
[28] Ghasemzadeh, H., & Nikouii, S. (2022). Numerical Investigation of oil recovery due to nanofluid injection into the oil reservoirs. Journal of Petroleum Geomechanics, 5(3), 61-73.
[29] Ghasemzadeh, H. (2008). Heat and contaminant transport in unsaturated soil.
[30] Changizi, F., Razmkhah, A., Ghasemzadeh, H., & Amelsakhi, M. (2021). Effect of oil-contamination on behavior of geocell-reinforced soil abutment wall. Journal of Petroleum Geomechanics; Vol, 4(1).
[31] Stubrin, L. (2018). Reprint of: Innovation, learning and competence building in the mining industry. The case of knowledge intensive mining suppliers (KIMS) in Chile. Resources Policy, 58, 62-70.
[32] Auty, R. (2002). Sustaining development in mineral economies: the resource curse thesis. Routledge.
[33] Sachs, J. D., & Warner, A. (1995). Natural resource abundance and economic growth.
[34] Sachs, J. D., & Warner, A. M. (1999). The big push, natural resource booms and growth. Journal of development economics, 59(1), 43-76.
[35] Wang, S., Tian, W., & Lu, B. (2023). Impact of capital investment and industrial structure optimization from the perspective of" resource curse": Evidence from developing countries. Resources Policy, 80, 103276.
[36] David, A. P., & Wright, G. (1997). Increasing returns and the genesis of American resource abundance. Industrial and Corporate Change, 6(2), 203-245.
[37] Ville, S., & Wicken, O. (2013). The dynamics of resource-based economic development: evidence from Australia and Norway. Industrial and Corporate change, 22(5), 1341-1371.
[38] Yilanci, V., Turkmen, N. C., & Shah, M. I. (2022). An empirical investigation of resource curse hypothesis for cobalt. Resources Policy, 78, 102843.
[39] Sachs, J. D., & Warner, A. M. (2001). The curse of natural resources. European economic review, 45(4-6), 827-838.
[40] Katz, J., & Pietrobelli, C. (2018). Natural resource-based growth, global value chains and domestic capabilities in the mining industry. Resources Policy, 58, 11-20.
[41] Janda, K., & Quarshie, G. (2017). Natural Resources, Oil and Economic Growth in Sub-Saharan Africa.
[42] Iimi, A. (2007). Escaping from the Resource Curse: Evidence from Botswana and the Rest of the World. IMF Staff Papers, 54(4), 663-699.
[43] Ma, Y., & Wang, F. (2023). Dutch disease via remittances and natural resources: a perspective of global economy. Resources Policy, 80, 103248.
[44] Gu, X., Alamri, A. M., Ahmad, M., Alsagr, N., Zhong, X., & Wu, T. (2023). Natural resources extraction and green finance: Dutch disease and COP27 targets for OECD countries. Resources Policy, 81, 103404.
[45] Bravo-Ortega, C., & Muñoz, L. (2021). Mining services suppliers in Chile: A regional approach (or lack of it) for their development. Resources Policy, 70, 101210.
[46] Auty, R. (2006). Mining enclave to economic catalyst: large mineral projects in developing countries. The Brown Journal of World Affairs, 13(1), 135-145.
[47] Hirschman, Albert Otto. (1958). The strategy of economic development. New Haven, Conn: Yale Univ. Press. ISBN 0-300-00117-7. OCLC 265036663
[48] Grossman, G. M. (1981). The theory of domestic content protection and content preference. The Quarterly Journal of Economics, 96(4), 583-603.
[49] Hausmann, R., Rodrik, D., & Sabel, C. (2008). Reconfiguring industrial policy: a framework with an application to South Africa.
[50] Geodecki, T., & Zawicki, M. (2023). The domestication of value chains through local content requirements: Can interconnected economies benefit from the Chinese experience? International Entrepreneurship Review, 9(2), 87-110.
[51] Bond, J., & Fajgenbaum, J. (2014). Harnessing natural resources for diversification. Global journal of emerging market economies, 6(2), 119-143.
[52] Ovadia, J. S. (2020). Natural resources and African economies: asset or liability? The Palgrave Handbook of African Political Economy, 667-677.
[53] Lebdioui, A. (2020). Local content in extractive industries: Evidence and lessons from Chile’s copper sector and Malaysia’s petroleum sector. The Extractive Industries and Society, 7(2), 341-352.
[54] Oil 2023 Analysis and forecast to 2028, International Energy Agency, (IEA, 2023), https://www.iea.org/
[55] Shuen, A., Feiler, P. F., & Teece, D. J. (2014). Dynamic capabilities in the upstream oil and gas sector: Managing next generation competition. Energy Strategy Reviews, 3, 5-13.
[56] Owen, N. A., Inderwildi, O. R., & King, D. A. (2010). The status of conventional world oil reserves—Hype or cause for concern? Energy policy, 38(8), 4743-4749.
[57] Marin, A., & Stubrin, L. (2015). KIBS associated to natural resource-based industries: seeds innovation and regional providers of the technology services embodied in seeds in Argentina and Brazil, 2000-2014.
[58] Iizuka, M., & Katz, J. (2015). Globalisation, Sustainability and the Role of Institutions: The Case of the C hilean Salmon Industry. Tijdschrift voor economische en sociale geografie, 106(2), 140-153.
 [59] علی زاده بهرام, جنت مکان ندا, قلاوند هرمز, غبیشاوی علی. (1391)، زمین شیمی و چینه نگاری سکانسی سازند پابده در میدان نفتی منصوری، جنوب غرب ایران.
[60] Wenrui, H., Jingwei, B., & Bin, H. (2013). Trend and progress in global oil and gas exploration. Petroleum Exploration and Development, 40(4), 439-443
[61] Geomechanics Software and Service Market Outlook (2022-2032), https://www.futuremarketinsights.com/reports/geomechanics-software-and-service-market
[62] Culter, T. (2012). The Australian experience of innovation driving productivity and competitiveness in the mining sector. In Cochilco Seminar, Santiago Chile, December.
[63] Ghasemzadeh, H., Babaei, S., Tesson, S., Azamat, J., & Ostadhassan, M. (2021). From excess to absolute adsorption isotherm: The effect of the adsorbed density. Chemical Engineering Journal, 425, 131495.
[64] Babaei, S., Ostadhassan, M., Moallemi, S. A., Rashidi, M., Ghasemzadeh, H., & Kadkhodaie, A. (2023). Study of methane adsorption in calcite mineral pores in shale gas reservoirs by molecular simulations. Journal of Petroleum Research, 32(1401-6), 37-48.
 [65] قاسم زاده, حسن, بابائی, سعید. (2022). تعیین جذب مطلق همدما در مخازن شیل گازی. نشریه علمی ژئومکانیک نفت, 5 (1), 1-16.‎
[66] Salisu, Y., & Bakar, L. J. A. (2019). Technological capability, relational capability and firms’ performance: The role of learning capability. Revista de Gestão, 27(1), 79-99.
[67] Madhani, P. M. (2010). The resource-based view (RBV): issues and perspectives. PACE, A Journal of Research of Prestige Institute of Management, 1(1), 43-55.
[68] Bell, M., & Pavitt, K. (1993). Technological accumulation and industrial growth: contrasts between developed and developing countries. Industrial and corporate change, 2(2), 157-210.‏
[69] Tello-Gamarra, J., & Fitz-Oliveira, M. (2021). Literature on technological capability: past, present and future. International Journal of Innovation Science, 13(4), 401-422.
[70] Ahmed, W., Najmi, A., Mustafa, Y., & Khan, A. (2019). Developing model to analyze factors affecting firms’ agility and competitive capability: A case of a volatile market. Journal of Modelling in Management, 14(2), 476-491.
[71] Bergek, A., Tell, F., Berggren, C., & Watson, J. (2008). Technological capabilities and late shakeouts: industrial dynamics in the advanced gas turbine industry, 1987–2002. Industrial and Corporate Change, 17(2), 335-392.
[72] Wang, Y., Lo, H. P., Zhang, Q., & Xue, Y. (2006). How technological capability influences business performance: An integrated framework based on the contingency approach. Journal of Technology Management in China, 1(1), 27-52.
[73] Lall, S. (1992). Technological capabilities and industrialization. World development, 20(2), 165-186.
[74] Rungsithong, R., Meyer, K. E., & Roath, A. S. (2017). Relational capabilities in Thai buyer-supplier relationships. Journal of Business & Industrial Marketing, 32(8), 1228-1244.
[75] Mat, A., & Razak, R. C. (2011). The influence of organizational learning capability on success of technological innovation (product) implementation with moderating effect of knowledge complexity. International Journal of Business and Social Science, 2(17).
[76] Martins, J. T., & Canhoto, R. (2016). Leveraging new knowledge with relational capabilities: An investigation of rural school libraries in southern Portugal. Library Review, 65(6/7), 386-403.
[77] Park, D. U., Park, H., Kim, Y., Baek, S., Lee, D., Jang, Y., ... & Rodriguez, F. S. (2021). The Role of Science, Technology and Innovation Policies in the Industrialization of Developing Countries.
[78] Wieland, A., & Wallenburg, C. M. (2013). The influence of relational competencies on supply chain resilience: a relational view. International journal of physical distribution & logistics management, 43(4), 300-320.
[79] Albort-Morant, G., Leal-Rodríguez, A. L., & De Marchi, V. (2018). Absorptive capacity and relationship learning mechanisms as complementary drivers of green innovation performance. Journal of Knowledge Management, 22(2), 432-452.
[80] Baark, E., Antonio, K. W., Lo, W., & Sharif, N. (2011, April). Innovation sources, capabilities and competitiveness: Evidence from Hong Kong firms. In DIME final conference (Vol. 6, p. 8).
[81] Arrow, K. J. (1962). The economic implications of learning by doing. The review of economic studies, 29(3), 155-173.
[82] Ray, A. S. (2008). Emerging through technological capability: an overview of India's technological trajectory.
[83] Von Hippel, E., & Tyre, M. J. (1995). How learning by doing is done: problem identification in novel process equipment. Research policy, 24(1), 1-12.
[84] Lundvall, B. Å. (2004). The economics of knowledge and learning. In Product inovation, interactive learning and economic performance (Vol. 8, pp. 21-42). Emerald Group Publishing Limited.
[85] Rosenberg, N. (1982). Inside the black box: technology and economics. cambridge university press.
[86] Creswell, J. W. (2014). A concise introduction to mixed methods research. SAGE publications.
[87] Silverman, D. (2019). Interpreting qualitative data. Interpreting Qualitative Data, 1-568.
[88] Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.‏
[89] Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.‏
[90] Mik-Meyer, N. (2020). Multimethod qualitative research. Qualitative research, 5, 357-374.
[91] Esterberg, K. G. (2002). Qualitative Methods in Social Research. NY, New York: McGraw-Hill.
[92] Sade-Beck, L. (2004). Internet ethnography: Online and offline. International Journal of Qualitative Methods, 3(2), 45-51.‏
[93] Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77-101.‏
[94] Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development. sage.‏
 [95] خنیفر حسین، مسلمی ناهید، (1395) اصول و مبانی روش‌های پژوهش کیفی (جلد 1)، انتشارات نگاه دانش، چاپ اول.
[96] Patton, M. Q. (1990). Qualitative evaluation and research methods. SAGE Publications, inc.‏
[97] Medawar, P. B. (2013). Induction and intuition in scientific thought. Routledge.‏
[98] King, N., & Horrocks, C. (2010). An introduction to interview data analysis. Interviews in qualitative research, 142, 174.‏
[99] Attride-Stirling, J. (2001). Thematic networks: an analytic tool for qualitative research. Qualitative research, 1(3), 385-405.‏
[100] Anderson, R. (2007). Thematic content analysis (TCA). Descriptive presentation of qualitative data, 3, 1-4.
[101] Brooks, J., Horrocks, C., & King, N. (2018). Interviews in qualitative research. Interviews in qualitative research, 1-360.
[102] Deng Julong (1982). Control problems of Grey Systems, Systems and Control Letters, 5,288-94.
[103] Deng Julong (1989). Introduction to grey system theory. The Journal of grey system, 1(1), 1-24.‏
[104] Tseng, M. L. (2009). A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert Systems with Applications, 36(4), 7738–7748.
[105] Bhatia, M. S., & Srivastava, R. K. (2018). Analysis of external barriers to remanufacturing using grey-DEMATEL approach: An Indian perspective. Resources, Conservation and Recycling, 136, 79-87.
[106] Aria Andrea, Jafari Parivash, Behifar Maryam, (2020), The Impediments to Student Engagement: A Hybrid Method Based on Fuzzy Delphi and Fuzzy DEMATEL, World Journal of Education, Vol 10, No 5.
[107] Ma, Z., Shao, C., Ma, S. & Ye, Z. (2011). Constructing road safety performance indicators using fuzzy Delphi method and grey Delphi method, Expert Syst. Appl., vol. 38, no. 3, pp. 1509–1514.
[108] Scott-Kemmis, D. (2013). How about those METS. Leveraging Australia’s mining equipment, technology and services sector. Sydney: Minerals Council of Australia.
[109] Kuramoto, J., & Sagasti, F. (2006). Innovation in resource-based technology clusters: investigating the lateral migration thesis: cleaning pollution: from mining to environmental remediation.
[110] Bamber, P., Fernandez-Stark, K., & Gereffi, G. (2016). Peru in the mining equipment global value chain: Opportunities for Upgrading.
[111] Kaplan, D. (2012). South African mining equipment and specialist services: Technological capacity, export performance and policy. Resources Policy, 37(4), 425-433.
 [112] یاوری, ماندانا, جعفری, پریوش, قورچیان, نادرقلی, زمانی, اصغر. (1402). سازو کارهای دستیابی به مزیت رقابتی گرایش ژئومکانیک نفت در دانشگاه‌های سطح یک شهر تهران. نشریه علمی ژئومکانیک نفت, 6 (1), 1-12.