تأثیر آلودگی نفتی بر ظرفیت باربری پی نواری مستقر بر ماسه مسلح با ژئوسل تحت بار خارج از مرکز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

3 دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

نفوذ نفت خام و مشتقات آن به خاک علاوه بر مشکلات مخرب و زیان آور زیست محیطی، منجر به تغییراتی در رفتار مکانیکی خاک می شود. هدف این مطالعه ارزیابی ظرفیت باربری پی های نواری مستقر بر ماسه‌ی آلوده به نفت مسلح با ژئوسل تحت بار خارج از مرکز از طریق مدل‌سازی عددی با استفاده از PLAXIS 2D است. رفتار پی بر اساس محتوای مختلف نفت با مقادیر 0، 3، 6، 9 و 12 درصد تحت بارگذاری با خروج از مرکزیت های مختلف e/B=0, 1/12, 1/6, 1/3 مورد ارزیابی قرار گرفته است. نتایج عددی نشان داد که آلودگی خاک بر عملکرد پی های نواری اثر منفی دارد، به طوری که افزایش محتوای نفت منجر به کاهش ظرفیت باربری پی می شود. مشاهده شد که تقویت خاک بستر با ژئوسل موجب افزایش ظرفیت باربری پی مستقر بر محیط آلوده به نفت به ازای مقادیر مختلف خروج از مرکزیت می شود. اثر تقویت با ژئوسل برای خاک آلوده بیشتر از خاک تمیز بود. علاوه بر این، با افزایش محتوای نفت و افزایش نشست، ضریب بهبود ظرفیت باربری (IF) افزایش یافت. همچنین، مشاهده شد که اثر تقویت کننده با افزایش خروج از مرکزیت بار برای هر دو خاک تمیز و آلوده افزایش می یابد. علاوه بر این، استفاده از ژئوسل‌ها زمانی موثرتر بود که بارگذاری خارج از هسته فونداسیون باشد، یعنی e/B>1/6. همچنین، کج شدن پی حول محور خط مرکزی آن به دلیل خروج از مرکزیت بار و همچنین تقویت خاک با ژئوسل منجر به کاهش ناحیه متاثر از تنش و در نتیجه عمق جابجایی خاک در زیر پی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Oil-contamination impact on bearing capacity of strip footing placed on geocell-reinforced sand under eccentric load

نویسندگان [English]

  • Mohammad Samed Jahanian 1
  • Arash Razmkhah 2
  • Hasan Ghasemzadeh 3
  • Hamidreza Vosoughifar 1
1 Department of Civil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Civil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 Civil Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

The infiltration of crude oil and its derivatives into the soil leads to changes in the mechanical behavior of the soil in addition to detrimental and environmental problems. This study aims to evaluate the bearing capacity of geocell-reinforced strip footings laid on oil-contaminated sand under eccentric load via numerical modeling using PLAXIS 2D. The behavior of the footing is assessed regarding various oil contents of 0, 3, 6, 9, and 12% under loading with different eccentricities of e/B=0, 1/12, 1/6, and 1/3. Numerical results revealed that soil pollution has a negative effect on the performance of strip footings, so that an increase in oil content led to a reduction in the magnitude of the load capacity. It was observed that reinforcement with geocell increases the bearing capacity of footing located on the oil-contaminated medium under different eccentricities. The effect of reinforcing with geocell was higher for contaminated soil compared to clean one. Further, the load capacity improvement factor (IF) increased by increasing oil content and settlement value. The results revealed that the reinforcing effect increased with an increase in load eccentricity for both clean and contaminated soils. In addition, the use of geocells is most effective when the loading is outside the core of the foundation, i.e., e/B>1/6. The footing tilting around the centerline axis of the footing due to load eccentricity as well as soil reinforcement with geocell led to a reduction in the stress-affected zone and as a result the displacement depth of the soil beneath the foundation.

کلیدواژه‌ها [English]

  • Bearing capacity
  • Strip footing
  • Geocell
  • Sand
  • Eccentricity
  • Oil-contaminated
[1] Ahmadi, S., Kamalian, M., and Askari, F. (2021). Evaluation of the static bearing capacity coefficients of rough strip footing using the stress characteristics method. Int. J. Civ. Eng. 19(2): 155–165. https://doi.org/10.1007/s40999-020-00539-y.
[2] Ahmadi, S., Kamalian, M., and Askari, F. (2020). Considerations on Bearing Capacity Factors of Rough Strip Footing Using the Stress Characteristics Method. Iran. J. Sci. Technol. Trans. Civ. Eng. 45(4): 2611–2621. https://doi.org/10.1007/s40996-020-00495-6.
[3] Khosravi, E., Ghasemzadeh, H., Sabour, M.R., Yazdani, H. (2013). Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology, 166, 11–16. https://doi.org/10.1016/j.enggeo.2013.08.004.
[4] Ahmadi, M., Ebadi, T. and Maknoon, R., (2021). Effects of crude oil contamination on geotechnical properties of sand-kaolinite mixtures. Engineering geology, 283, p.106021. https://doi.org/10.1016/j.enggeo.2021.106021.
[5] Nasehi, S.A., Uromeihy, A., Nikudel, M.R. and Morsali, A., (2016). Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotechnical and Geological Engineering, 34, pp.333-345. https://doi.org/10.1007/s10706-015-9948-7.
[6] Safehian, H., Rajabi, A.M. and Ghasemzadeh, H., (2018). Effect of diesel-contamination on geotechnical properties of illite soil. engineering geology, 241, pp.55-63. https://doi.org/10.1016/j.enggeo.2018.04.020.
[7] Chen, Q., He, Y. and Zhang, Z., (2022). Effects of diesel contamination on geotechnical properties of granitic residual soil. Arabian Journal of Geosciences, 15(17), p.1474. https://doi.org/10.1007/s12517-022-10756-5.
[8] Ghasemzadeh, H., Tabaiyan, M. (2017). The Effect of Diesel Fuel Pollution on the Efficiency of Soil stabilization Method. Geotechnical and Geological Engineering, 35, 475–484. https://doi.org/10.1007/s10706-016-0121-8.
[9] Khamehchiyan, M., Charkhabi, A.H. and Tajik, M., (2007). Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering geology, 89(3-4), pp.220-229. https://doi.org/10.1016/j.enggeo.2006.10.009.
[10] Karkush, M.O. and Kareem, Z.A., (2017). Investigation of the impacts of fuel oil on the geotechnical properties of cohesive soil. Engineering Journal, 21(4), pp.127-137. https://doi.org/10.4186/ej.2017.21.4.127.
[11] Nasr, A.M., (2009). Experimental and theoretical studies for the behavior of strip footing on oil-contaminated sand. Journal of geotechnical and geoenvironmental engineering, 135(12), pp.1814-1822. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000165.
[12] Hosseini, A. and Hajiani Boushehrian, A., (2019). Laboratory and numerical study of the behavior of circular footing resting on sandy soils contaminated with oil under cyclic loading. Scientia Iranica, 26(6), pp.3219-3232. DOI: 10.24200/SCI.2018.5427.1267.
[13] Joukar, A. and Boushehrian, A.H., (2020). Experimental study of strip footings rested on kerosene oil-and gas oil-contaminated sand slopes. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, pp.209-217. https://doi.org/10.1007/s40996-018-00231-1.
[14] Al-Adly, A.I.F., Fadhil, A.I. and Fattah, M.Y., (2019). Bearing capacity of isolated square footing resting on contaminated sandy soil with crude oil. Egyptian Journal of Petroleum, 28(3), pp.281-288. https://doi.org/10.1016/j.ejpe.2019.06.005.
[15] Shin, E.C., Lee, J.B. and Das, B.M., (1999). Bearing capacity of a model scale footing on crude oil-contaminated sand. Geotechnical & Geological Engineering, 17, pp.123-132. https://doi.org/10.1023/A:1016078420298.
[16] Nasr, A.M., (2016). Behaviour of strip footing on oil-contaminated sand slope. International Journal of Physical Modelling in Geotechnics, 16(3), pp.134-151. https://doi.org/10.1680/jphmg.15.00014.
[17] Dash, S.K., Krishnaswamy, N.R. and Rajagopal, K., (2001). Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19(4), pp.235-256. https://doi.org/10.1016/S0266-1144(01)00006-1.
[18] Sitharam, T.G. and Sireesh, S., (2006). Effects of base geogrid on geocell-reinforced foundation beds. Geomechanics and Geoengineering: An International Journal, 1(3), pp.207-216. https://doi.org/10.1080/17486020600900596.
[19] Thallak, S.G., Saride, S., Dash, S.K. (2007). Performance of surface footing on geocell-reinforced soft clay beds. Geotechnical and Geological Engineering, 25, 509–524. https://doi.org/10.1007/s10706-007-9125-8.
[20] Zhou, H., Wen, X. (2008). Model studies on geogrid- or geocell-reinforced sand cushion on soft soil. Geotextiles and Geomembranes, 26, 231–238. https://doi.org/10.1016/j.geotexmem.2007.10.002.
[21] Pokharel, S.K., Han, J., Parsons, R.L., Qian, Y., Leshchinsky, D. and Halahmi, I., (2009). Experimental study on bearing capacity of geocell-reinforced bases. In 8th international conference on Bearing Capacity of Roads, Railways and Airfields (pp. 1159-1166). June 2009: Champaign, IL, USA.
[22] Sireesh, S., Sitharam, T.G. and Dash, S.K., (2009). Bearing capacity of circular footing on geocell–sand mattress overlying clay bed with void. Geotextiles and Geomembranes, 27(2), pp.89-98. https://doi.org/10.1016/j.geotexmem.2008.09.005.
[23] Tafreshi, S.M. and Dawson, A.R., (2010). Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement. Geotextiles and Geomembranes, 28(1), pp.72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003.
[24] Yang, X., Han, J., Pokharel, S.K., Manandhar, C., Parsons, R.L., Leshchinsky, D. and Halahmi, I., (2012). Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases. Geotextiles and Geomembranes, 32, pp.95-103. https://doi.org/10.1016/j.geotexmem.2011.10.004.
[25] Fazeli Dehkordi, P., Ghazavi, M., Ganjian, N. and Karim, U.F.A., (2019). Effect of geocell-reinforced sand base on bearing capacity of twin circular footings. Geosynthetics International, 26(3), pp.224-236. https://doi.org/10.1680/jgein.19.00047.
[26] Changizi, F., Razmkhah, A., Ghasemzadeh, H. and Amelsakhi, M., (2022). Behavior of geocell-reinforced soil abutment wall: A physical modeling. Journal of Materials in Civil Engineering, 34(3), p.04021495. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004132.
[27] Madhavi Latha, M., Somwanshi, A. (2009). Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes, 27, 409–422. https://doi.org/10.1016/j.geotexmem.2009.03.005.
[28] Dash, S.K., Rajagopal, K. and Krishnaswamy, N.R., (2001). Strip footing on geocell reinforced sand beds with additional planar reinforcement. Geotextiles and Geomembranes, 19(8), pp.529-538. https://doi.org/10.1016/S0266-1144(01)00022-X.
[29] Dash, S.K., Reddy, P.D.T. and Raghukanth, S.T.G., (2008). Subgrade modulus of geocell-reinforced sand foundations. Proceedings of the Institution of Civil Engineers-Ground Improvement, 161(2), pp.79-87. https://doi.org/10.1680/grim.2008.161.2.79.
[30] Dash, S.K., (2012). Effect of geocell type on load-carrying mechanisms of geocell-reinforced sand foundations. International Journal of Geomechanics, 12(5), pp.537-548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162.
[31] Mehrjardi, G.T. and Motarjemi, F., (2018). Interfacial properties of Geocell-reinforced granular soils. Geotextiles and Geomembranes, 46(4), pp.384-395. https://doi.org/10.1016/j.geotexmem.2018.03.002.
[32] Mehrjardi, G.T., Behrad, R. and Tafreshi, S.M., (2019). Scale effect on the behavior of geocell-reinforced soil. Geotextiles and Geomembranes, 47(2), pp.154-163. https://doi.org/10.1016/j.geotexmem.2018.12.003.
[33] Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L., Halahmi, I. (2010). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes 28, 570-578. http://doi.org/10.1016/j.geotexmem.2010.06.002.
[34] Patra, C.R., Das, B.M. and Atalar, C., (2005). Bearing capacity of embedded strip foundation on geogrid-reinforced sand. Geotextiles and Geomembranes, 23(5), pp.454-462. https://doi.org/10.1016/j.geotexmem.2005.02.001.
[35] El Sawwaf, M.A., (2007). Behavior of strip footing on geogrid-reinforced sand over a soft clay slope. Geotextiles and Geomembranes, 25(1), 50-60. https://doi.org/10.1016/j.geotexmem.2006.06.001.
[36] El Sawwaf, M., (2009). Experimental and numerical study of eccentrically loaded strip footings resting on reinforced sand. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), pp.1509-1518. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000093.
[37] El Sawwaf, M. and Nazir, A., (2012). Behavior of eccentrically loaded small-scale ring footings resting on reinforced layered soil. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 376-384. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000593.
[38] Badakhshan, E. and Noorzad, A., (2015). Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets. Journal of Rock Mechanics and Geotechnical Engineering, 7(6), pp.691-699. https://doi.org/10.1016/j.jrmge.2015.08.006.
[39] Dash, S.K., (2010). Influence of relative density of soil on performance of geocell-reinforced sand foundations. Journal of Materials in Civil Engineering, 22(5), pp.533-538. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000040.
[40] Moghaddas Tafreshi, S.N., Sharifi, P., Dawson, A.R. (2016). Performance of circular footings on sand by use of multiple-geocell or –planar geotextile reinforcing layers. Soils and Foundations, 56(6), 984–997: http://doi.org/10.1016/j.sandf.2016.11.004.
[41] Shadmand, A., Ghazavi, M. and Ganjian, N., (2018). Load-settlement characteristics of large-scale square footing on sand reinforced with opening geocell reinforcement. Geotextiles and Geomembranes, 46(3), 319-326. https://doi.org/10.1016/j.geotexmem.2018.01.001.
[42] Mehdipour, I., Ghazavi, M., Moayed, R.Z. (2013). Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect. Geotextiles and Geomembranes, 37, 23–34. https://doi.org/10.1016/j.geotexmem.2013.01.001.
[43] Hegde, A., Sitharam, T.G. (2013). Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4), 346–354. https://doi.org/10.1179/1938636213Z.00000000043.
[44] Changizi, F., Razmkhah, A., Ghasemzadeh, H. and Amelsakhi, M., (2021). Effect of oil-contamination on behavior of geocell-reinforced soil abutment wall. Journal of Petroleum Geomechanics; Vol, 4(1). DOI: 10.22107/jpg.2022.333533.1161.
[45] Hegde, A.M, Sitharam, T.G. (2015). Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets. Canadian Geotechnical Journal, 52, 1–12. https://doi.org/10.1139/cgj-2014-0387.
[46] Chowdhury, S. and Patra, N.R., (2021). Settlement behavior of circular footing on geocell-and geogrid-reinforced pond ash bed under combine static and cyclic loading. Arabian Journal of Geosciences, 14(11), p.1063. https://doi.org/10.1007/s12517-021-07424-5.
[47] Bathurst, R.J., Karpurapu, R.G. (1993). Large-scale triaxial compression testing of geocell-reinforced granular soils. Geotechnical Testing Journal, 16, 296–303. http://doi.org/10.1520/GTJ10050J.
[48] Rajagopal, K., Krishnaswamy, N.R., and Madhavi Latha, G. (1999). Behavior of sand confined in single and multiple geocells. Geotextiles and Geomembranes, 17, 171–184. https://doi.org/10.1016/S02661144(98)00034-X.
[49] Madhavi Latha, M., Rajagopal, K. (2007). Parametric finite element analyses of geocell-supported embankments. Canadian Geotechnical Journal, 44, 917–927. https://doi.org/10.1139/T07-039.
[50] Jahanian, M. S., Razmkhah, A., Ghasemzadeh, H., & Vosoughifar, H. (2022). Bearing capacity of the strip footing located on the sand reinforced by geocell under eccentric load. Arabian Journal of Geosciences15(15), 1328. https://doi.org/10.1007/s12517-022-10600-w.
[51] Madhavi Latha, G., (2000). Investigations on the behaviour of geocell supported embankments. PhD. thesis, Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai.
[52] Soltani-Jigheh, H., Vafaei Molamahmood, H., Ebadi, T., Soorki, A.A. (2018). Effect of Oil-Degrading Bacteria on Geotechnical Properties of Crude Oil–Contaminated Sand. Environmental & Engineering Geoscience, 24 (3), 333–341. https://doi.org/10.2113/EEG-1883.
[53] Badakhshan, E. and Noorzad, A., (2017). Effect of footing shape and load eccentricity on behavior of geosynthetic reinforced sand bed. Geotextiles and Geomembranes, 45(2), 58-67. https://doi.org/10.1016/j.geotexmem.2016.11.007.
[54] Gill, G. and Mittal, R.K., (2019). Use of waste tire-chips in shallow footings subjected to eccentric loading-an experimental study. Construction and Building Materials, 199, pp.335-348. https://doi.org/10.1016/j.conbuildmat.2018.12.024.