مطالعه اثر چگالی شبکه شکستگی‌ها بر پایداری چاه و هرزروی سیال حفاری با استفاده از روش المان‌مجزای سه بعدی -شبکه شکستگی‌های مجزا برای چاه SIE-01 در میدان نفتی سیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 معدن، مکانیک سنگ، صنعتی امیر کبیر، تهران، ایران

2 دکتری ژئومکانیک، دانشگاه ارومیه

3 اداره زمین شناسی، شرکت نفت فلات قاره، تهران، ایران

چکیده

ناپایداری چاه‌ و هرزروی سیال حفاری در سازند‌های دارای شکستگی یکی از مسائل عمده در حفاری‌های عمیق است. بررسی اثر حضور شکستگی‌ها بر مکانیسم‌های ناپایداری چاه و هرزروی سیال حفاری اهمیت ویژه‌ای در تعیین یک الگوی حفاری کارآمد دارد. در این مقاله به-منظور ارزیابی پایداری چاه قائم و همچنین بررسی اثر حضور شکستگی‌ها بر میزان هرزروی سیال حفاری، شبیه‌سازی سه‌بعدی یک چاه در یکی از میدان‌های نفتی خلیج‌فارس ارائه‌شده است. شبیه‌سازی شرایط هیدرومکانیکی این چاه و پیاده‌سازی شکستگی‌های منطقه به ترتیب با استفاده از روش المان‌مجزا و شبکه شکستگی‌های مجزا انجام‌شده است. مدل بر اساس معیار میانگین شعاع زون شکست پلاستیک و لاگ کالیپر، اعتبارسنجی شده است. در این مطالعه، اثر تغییرات چگالی شکستگی‌ها بر میزان هرزروی سیال حفاری به‌عنوان یک عامل مهم در پایداری چاه موردبررسی قرار گرفت. نتایج نشان داد که تغییرات لیتولوژی سنگ تأثیر بسزایی در گسترش شعاع زون شکست پلاستیک در اطراف چاه دارد. علاوه بر این، افزایش چگالی شبکه شکستگی‌ها منجر به افزایش میزان هرزروی سیال حفاری در چاه می‌شود. بررسی تغییر شکل‌های برشی در دیواره چاه نشان داد که در یک چگالی مشخص از شبکه شکستگی‌ها، مکانیسم‌های وقوع ناپایداری در چاه محدود خواهد شد.

کلیدواژه‌ها


Baecher, G. B. (1983). Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology, 15(2), 329-348.
Bour, O., Davy, P., Darcel, C., & Odling, N. (2002). A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). Journal of Geophysical Research: Solid Earth, 107(B6), ETG-4.
Camac, B. A., & Hunt, S. P. (2004, January). Applications of stress field modelling using the distinct element method for petroleum production. In SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers.
Cappa, F., Guglielmi, Y., Rutqvist, J., Tsang, C. F., & Thoraval, A. (2006). Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1062-1082.
Einstein, H. H., & Baecher, G. B. (1983). Probabilistic and statistical methods in engineering geology. Rock mechanics and rock engineering, 16(1), 39-72.
Hart, R. (2003). Enhancing rock stress understanding through numerical analysis. International journal of rock mechanics and mining sciences, 40(7-8), 1089-1097.
Hashemi, S. S., Taheri, A., & Melkoumian, N. (2014). Shear failure analysis of a shallow depth unsupported borehole drilled through poorly cemented granular rock. Engineering geology, 183, 39-52.
Hawkes, C. D. (2007). Assessing the mechanical stability of horizontal boreholes in coal. Canadian Geotechnical Journal, 44(7), 797-813.
Itasca. (2016). 3DEC User Manual Version 5.2. Minneapolis: Itasca Consulting Group.
Karatela, E., Taheri, A., Xu, C., & Stevenson, G. (2016). Study on effect of in-situ stress ratio and discontinuities orientation on borehole stability in heavily fractured rocks using discrete element method. Journal of Petroleum Science and Engineering, 139, 94-103.
Karatela, E., & Taheri, A. (2018). Three-dimensional hydro-mechanical model of borehole in fractured rock mass using discrete element method. Journal of Natural Gas Science and Engineering, 53, 263-275.
Lei, Q., Latham, J. P., & Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151-176.
Li, S., George, J., & Purdy, C. (2012). Pore-pressure and wellbore-stability prediction to increase drilling efficiency. Journal of Petroleum Technology, 64(02), 98-101.
Min, K. B., Rutqvist, J., Tsang, C. F., & Jing, L. (2004). Stress-dependent permeability of fractured rock 
masses: a numerical study. International Journal of Rock Mechanics and Mining Sciences, 41(7), 1191- 1210.
Nagel, N. B., Sanchez-Nagel, M. A., Zhang, F., Garcia, X., & Lee, B. (2013). Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock mechanics and rock engineering, 46(3), 581-609.
Rives, T., Razack, M., Petit, J. P., & Rawnsley, K. D. (1992). Joint spacing: analogue and numerical simulations. Journal of Structural Geology, 14(8-9), 925-937.
Salehi, S., Hareland, G., & Nygaard, R. (2010). Numerical simulations of wellbore stability in underbalanced-drilling wells. Journal of Petroleum Science and Engineering, 72(3-4), 229-235.
Santarelli, F. J., Chenevert, M. E., & Osisanya, S. O. (1992, January). On the Stability of Shales and its consequences in terms of swelling and wellbore stability. In SPE/IADC Drilling Conference. Society of Petroleum Engineers.
Sapigni, M., LA BARBERA, G., & Ghirotti, M. (2003). Engineering geological characterization and comparison of predicted and measured performance of a cavern in the Italian Alps.
Snow, D. T. (1970, January). The frequency and apertures of fractures in rock. In International journal of Rock mechanics and Mining sciences & Geomechanics Abstracts (Vol. 7, No. 1, pp. 23-40). Pergamon.
Zhang, X., Last, N., Powrie, W., & Harkness, R. (1999). Numerical modelling of wellbore behaviour in fractured rock masses. Journal of Petroleum Science and Engineering, 23(2), 95-115.
Zoback, M. D. (2010). Reservoir geomechanics. Cambridge University Press.