ارائه‌ی یک مدل تحلیلی پوروالاستیک جهت ارزیابی عملکرد ذرات LCM در مقاوم‌سازی دیواره‌ی چاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده نفت دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشیار دانشکده مهندسی نفت دانشگاه صنعتی امیرکبیر، تهران، ایران

3 دانشیار دانشکده مهندسی مکانیک دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

یکی از مهمترین مشکلات در حین عملیات، هرزروی سیال حفاری می‌باشد که منجر به اتلاف هزینه‌ و زمان مفید عملیات می‌گردد. تجربیات میدانی و مطالعات پژوهشی نشان می‌دهد که «مقاوم‌سازی دیواره‌‌ی چاه (WBS)» رویکردی مؤثر برای کنترل و یا درمان این چالش است. درواقع انسداد ترک‌های موجود در دیواره‌ی چاه با استفاده از ذرات کنترل‌کننده‌ی هرزروی (LCM)، توزیع تنش و فشار سیال را بر دیواره‌ی چاه و سطوح ترک‌، تغییر داده و احتمال هرزروی را کاهش می‌دهد. در این مقاله تلاش شده است تا با بکارگیری مفاهیم مکانیک شکست، یک مدل تحلیلی پوروالاستیک ارائه شود و عوامل مؤثر بر تنش‌های حول دیواره‌ی چاه و نوک ترک، ارزیابی گردد. نتایج بدست آمده از آنالیز حساسیت بر روی پارامترهای مختلف نشان می‌دهد که پارامترهای ژئومکانیکی (ناهمسانگردی تنش‌های برجا)، پارامترهای هندسی (محل تشکیل پلاگ LCM، طول شکاف) و پارامترهای پوروالاستیک سازند (فشار مخزن و ضریب بیوت)، اثر قابل ملاحظه‌ای بر میزان موفقیت WBS دارند. بر طبق این نتایج، مقاوم‌سازی دیواره‌ی چاه، در شرایط تنش همسانگرد، سازند کم‌فشارتر و طول شکاف کمتر، مؤثرتر می‌باشد؛ چراکه تمرکز تنش در نوک ترک، کمتر بوده و احتمال رشد آن کاهش می‌یابد. همچنین، هرچه محل تشکیل پلاگ LCM به دهانه‌ی شکاف، نزدیک‌تر باشد مقاوم‌سازی بهتر انجام می‌شود.

کلیدواژه‌ها


Al-Hameedi, AT, Alkinani, HH, Norman, SD, & Flori, RE. (2018). Practical Strategies and Engineered
Solutions to Minimize the Impact of Lost Circulation Problem. J Pet Environ Biotechnol, 9(356), 2 .
Alberty, Mark W, & McLean, Michael R. (2004). A physical model for stress cages. Paper presented at the
SPE Annual Technical Conference and Exhibition, SPE 90493.
Alsaba, Mortadha, Nygaard, Runar, Saasen, Arild, & Nes, Olav-Magnar. (2016). Experimental
investigation of fracture width limitations of granular lost circulation treatments. Journal of Petroleum
Exploration and Production Technology, 6(4), 593-603. doi: 10.1007/s13202-015-0225-3.
Benyeogor, Ogochukwu, Awe, Sunday, Amah, Obinna, Ugochukwu, Oseme, Erinle, Adeyemi,
Akinfolarin, Ayodele, & Oseme, Ugochukwu. (2016), Wellbore Strengthening in Narrow Margin
Drilling, SPE-AFRC-2554559-MS.
Cook, John, Growcock, Fred, Guo, Quan, Hodder, Mike, & van Oort, Eric. (2011). Stabilizing the wellbore
to prevent lost circulation. Oilfield Review, 2012(23), 4 .
Feng, Y. (2016). Fracture Analysis for Lost Circulation and Wellbore Strengthening. PhD Dissertation, The University of Texas at Austin .
Feng, Y, Arlanoglu, C, Podnos, E, Becker, E, & Gray, KE. (2015). Finite-element studies of hoop-stress
enhancement for wellbore strengthening. SPE Drilling & Completion, 30(01), 38-51 .
Feng, Yongcun, & Gray, KE. (2016). A parametric study for wellbore strengthening. Journal of Natural
Gas Science and Engineering, 30, 350-363 .
Feng, Yongcun, & Gray, KE. (2017a). Modeling lost circulation through drilling-induced fractures. SPE Journal .
Feng, Yongcun, & Gray, KE. (2017b). Review of fundamental studies on lost circulation and wellbore
strengthening. Journal of Petroleum Science and Engineering .
Feng, Yongcun, & Gray, Kenneth E. (2016). A fracture-mechanics-based model for wellbore strengthening
applications. Journal of Natural Gas Science and Engineering, 29, 392-400 .
Fjar, Erling, Holt, Rune M, Raaen, AM, Risnes, Rasmus, & Horsrud, P. (2008). Petroleum related rock mechanics (Vol. 53): Elsevier.
Ghalambor, Ali, Salehi, Saeed, Shahri, Mojtaba P, & Karimi, Moji. (2014). Integrated workflow for lost
circulation prediction. Paper presented at the SPE international symposium and exhibition on formation damage control.
Growcock, FB, Kaageson-Loe, N, Friedheim ,J, Sanders, MW, & Bruton, J. (2009). Wellbore stability,
stabilization and strengthening. Paper presented at the Offshore Mediterranean Conference and Exhibition, OMC-2009-107.
Guo, Q, Feng, YZ, & Jin, ZH. (2011). Fracture aperture for wellbore strengthening applications. Paper
presented at the 45th US Rock Mechanics/Geomechanics Symposium., ARMA 11-378.
Ito, Takatoshi, Zoback, Mark D, & Peska, Pavel. (2001). Utilization of mud weights in excess of the least
principal stress to stabilize wellbores: Theory and practical examples. SPE Drilling & Completion, 16(04), 221-229 .
Ivan, C, Bruton, J, & Bloys, B. (2003). How can we best manage lost circulation? Paper presented at the
American Association of Drilling Engineeers (AADE) National Technology Conference, Houston, TX, Apr., AADE-03-NTCE-38.
Mehrabian, Amin, Jamison, Dale E, & Teodorescu, Sorin Gabriel. (2015). Geomechanics of lost-circulation
events and wellbore-strengthening operations. SPE Journal, 20(06), 1,305-301,316 .
Mostafavi Toroqi, S. V. (2012). Experimental Analysis and Mechanistic Modeling of Wellbore Strengthening. University of Calgary .
Rezagholilou, Ali, Vialle, Stephanie, & Madadi, Mahyar. (2017). Determination of safe mud window
considering time-dependent variations of temperature and pore pressure: Analytical and numerical
approaches. Journal of Rock Mechanics and Geotechnical Engineering, 2, 1-12 .
Salehi, Saeed. (2012). Numerical simulations of fracture propagation and sealing: Implications for
wellbore strengthening: Missouri University of Science and Technology.
Salehi, Saeed, & Nygaard, Runar. (2012). Numerical modeling of induced fracture propagation: A novel
approach for lost circulation materials (LCM) design in borehole strengthening applications of deep
offshore drilling. Paper presented at the SPE Annual Technical Conference and Exhibition. SPE135155-MS.
Shahri, Mojtaba P. (2015). Quantification of wellbore strengthening mechanisms: comprehensive
parametric analysis. Paper presented at the SPE Annual Technical Conference and Exhibition . SPE-174770-MS.
Shahri, Mojtaba P, Oar, Trevor, Safari, Reza ,Karimi, Moji, & Mutlu, Uno. (2014). Advanced
geomechanical analysis of wellbore strengthening for depleted reservoir drilling applications. Paper
presented at the IADC/SPE Drilling Conference and Exhibition. SPE-167976-MS.
Shahri, Mojtaba P, Oar, Trevor T, Safari, Reza, Karimi, Moji, & Mutlu, Uno. (2015). Advanced
semianalytical geomechanical model for wellbore-strengthening applications. SPE Journal, 20(06), 1,276-271,286 .
Shen, Guoyang, & Shen, Xinpu. (2016). Widened Safe Mud Window for Subsalt Well Sections: A Workflow
and Case Study. Paper presented at the Offshore Technology Conference. OTC-26917-MS
Shen, Xinpu. (2016). Widened safe mud window for naturally fractured shale formations: a workflow and
case study. Paper presented at the IADC/SPE Asia Pacific drilling technology conference. SPE180519-MS.
Sweatman, RE, Kessler, CW, & Hillier, JM. (1997). New solutions to remedy lost circulation, crossflows,
and underground blowouts. Paper presented at the SPE/IADC drilling conference. SPE-37671-MS.
Tada, Hiroshi, Paris, Paul C, & Irwin, George R. (1973). The stress analysis of cracks. Handbook, Del Research Corporation .
Van Oort, Eric, Friedheim, James E, Pierce, Toby, & Lee, John. (2011). Avoiding losses in depleted and
weak zones by constantly strengthening wellbores. SPE Drilling & Completion, 26(04), 5. 530-19.
Wang, H, Soliman, MY, Towler, BF, & Shan, Z. (2009). Strengthening a wellbore with multiple fractures:
further investigation of factors for strengthening a wellbore. Paper presented at the 43rd US Rock
Mechanics Symposium & 4th US-Canada Rock Mechanics Symposium. ARMA-09-067.
Wang, Hong, Soliman, Mohamed Y, & Towler, Brian Francis. (2008). Investigation of factors for
strengthening a wellbore by propping fractures. Paper presented at the IADC/SPE drilling conference. SPE-112629-MS.
Wang, Hong, Towler, Brian Francis, & Soliman, Mohamed Y. (2007). Fractured wellbore stress ;analysis:
sealing cracks to strengthen a wellbore. Paper presented at the SPE/IADC Drilling Conference.
Wang, Ze, & Chen, Yuanhang. (2018). Finite Element Analysis of Thermally Induced Stresses in the NearWellbore Region During Invasion of Mud Into Fractures. Journal of Energy Resources Technology, 140(5), 052909 .
Wang, Ze, Yang, Mingzheng, & Chen, Yuanhang. (2019). Numerical modeling and analysis of induced
thermal stress for a non-isothermal wellbore strengthening process. Journal of Petroleum Science and Engineering, 175, 173-183 .