Prediction of Shear Wave Velocity by Extreme Learning Machine Technique from Well Log Data

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی معدن ، دانشگاه صنعتی بیرجند ، بیرجند ، ایران

2 باشگاه پژوهشگران جوان و نخبگان ، واحد اهواز ، دانشگاه آزاد اسلامی ، اهواز ، ایران

3 گروه مهندسی نفت ، دانشگاه صنعتی امیرکبیر ، تهران ، ایران

چکیده

Shear wave velocity (Vs) is one of the key geomechanical parameters effective in the drilling of hydrocarbon reservoirs. In this study, a novel machine learning (extra learning machine (ELM)) approach is developed to predict Vs based on four input variables obtained from well log, including neutron porosity (NPHI), bulk density (RHOB) and gamma-ray (GR). Two algorithms multi-layer perceptron (MLP) and ELM and various empirical equations (Brocher, Eskandari et al., Castagna et al. and Pickett) have been used to predict Vs in this paper. The results show that the performance accuracy for these models includes: ELM> MLP> Castagna et al. > Eskandari et al. > Pickett> Brocher. So, the result that shows the ELM model has higher accuracy than the other machine learning (MLP) approach and also other empirical equations (RMSE = 0.0444 km/s and R2 = 0.9809). Some advantages to the other artificial neural network approach include higher accuracy and performance characteristics, simple algorithm learning, improved performance, nonlinear conversion during training, no stuck in local optimal points, and it is over fitting. The novelty used in this paper is the type of newly implemented artificial model (ELM) and the number of input parameter. This approach possesses to the higher power, speed and accuracy than the methods used by other researchers to predict Vs.

کلیدواژه‌ها


Akhundi, H., Ghafoori, M., Lashkaripour, G.-R., 2014. Prediction of shear wave velocity using artificial neural network technique, multiple regression and petrophysical data: A case study in Asmari reservoir (SW Iran). Open Journal of Geology 2014. doi: http://creativecommons.org/licenses/by/4.0./
Ali, J., 1994. Neural networks: a new tool for the petroleum industry?, European petroleum computer conference. Society of Petroleum Engineers. doi: https://doi.org/10.2118/27561-MS.
Anemangely, M., Ramezanzadeh ,A., Amiri, H., Hoseinpour, S.-A., 2019. Machine learning technique for the prediction of shear wave velocity using petrophysical logs. Journal of Petroleum Science and Engineering 174, 306-327. doi: https://doi.org/10.1016/j.petrol.2018.11.032 .
Bagheripour, P., Gholami, A., Asoodeh, M., Vaezzadeh-Asadi, M., 2015. Support vector regression based determination of shear wave velocity. Journal of Petroleum Science and Engineering 125, 95-99. doi: https://doi.org/10.1016/j.petrol.2014.11.025 .
Behnia, D., Ahangari, K., Moeinossadat, S.R., 2017. Modeling of shear wave velocity in limestone by soft computing methods. International Journal of Mining Science and Technology 27, 423-430. doi: https://doi.org/10.1016/j.ijmst.2017.03.006 .
Cheng, J., Xiong, Y., 2017 .Application of extreme learning machine combination model for dam displacement prediction. Procedia Computer Science 107, 373-378. doi: https://doi.org/10.1016/j.procs.2017.03.120 .
Choubineh, A., Ghorbani, H., Wood, D.A., Moosavi, S.R., Khalafi, E., Sadatshojaei, E., 2017. Improved predictions of wellhead choke liquid critical-flow rates: modelling based on hybrid neural network training learning based optimization. Fuel 207, 547-560. doi: https://doi.org/10.1016/j.fuel.2017.06.131 .
Du, Q., Yasin, Q., Ismail, A., Sohail, G.M., 2019. Combining classification and regression for improving shear wave velocity estimation from well logs data. Journal of Petroleum Science and Engineering 182, 106260. doi: https://doi.org/10.1016/j.petrol.2019.106260 .
Elkatatny ,S., Mahmoud, M., Mohamed, I., Abdulraheem, A., 2018. Development of a new correlation to determine the static Young’s modulus. Journal of Petroleum Exploration and Production Technology 8, 17-30. doi: https://link.springer.com/article/10.1007/s13202-017-0 .4-316
Ghorbani, H., Moghadasi, J., Wood, D.A., 2017. Prediction of gas flow rates from gas condensate reservoirs through wellhead chokes using a firefly optimization algorithm. Journal of Natural Gas Science and Engineering 45, 256-271. doi: https://doi.org/10.1016/j.jngse.2017.04.034 .
Ghorbani, H., Wood, D.A., Choubineh, A., Mohamadian, N., Tatar, A., Farhangian, H., Nikooey, A., 2020. Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared. Experimental and Computational Multiphase Flow 2, 225-246. doi: https://link.springer.com/article/10.1007/s42757-019-0047-5.
Ghorbani, H., Wood, D.A., Choubineh, A., Tatar, A., Abarghoyi, P.G., Madani, M., Mohamadian, N., 2018. Prediction of oil flow rate through an orifice flow meter: Artificial intelligence alternatives compared. Petroleum. doi: https://doi.org/10.1016/j.petlm.2018.09.003 .
Ghorbani, H., Wood, D.A., Moghadasi, J., Choubineh, A., Abdizadeh, P., Mohamadian, N., 2019. Predicting liquid flow-rate performance through wellhead chokes with genetic and solver optimizers: an oil field case study. Journal of Petroleum Exploration and Production Technology 9, 1355-1373. doi: https://link.springer.com/article/10.1007/s13202-018-0532-6.
Huang, G.-B., 2014. An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Computation 6, 376-390. doi: https://link.springer.com/article/10.1007%2Fs12559-014-9255-2 .
Huang, G.-B., Zhou, H., Ding, X., Zhang, R., 2011. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42, 513-529. doi: https://doi.org/10.1109/TSMCB.2011.2168604 .
Hudson, J.A., Stephansson, O., Andersson, J., 2005. Guidance on numerical modelling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories. International Journal of Rock Mechanics and Mining Sciences 42, 850-870. doi: https://doi.org/10.1016/j.ijrmms.2005.03.018 .
Kaviani-Hamedani, F., Fakharian, K., Lashkari, A., 2021. Bidirectional shear wave velocity measurements to track fabric anisotropy evolution of a crushed silica sand during shearing. Journal of Geotechnical and Geoenvironmental Engineering 147, 04021104. doi :https://orcid.org/0000-0001-6153-2877 .
Khoshouei, M., Bagherpour, R., 2021. Predicting the Geomechanical Properties of Hard Rocks Using Analysis of the Acoustic and Vibration Signals During the Drilling Operation. Geotechnical and Geological Engineering .2099 -2087 ,39 doi: https://link.springer.com/article/10.1007/s10706-020-01611-z .
Mehrgini, B., Izadi, H., Memarian, H., 2019. Shear wave velocity prediction using Elman artificial neural network. Carbonates and Evaporites 34, 1281-1291. doi: https://link.springer.com/article/10.1007/s13146-017-0406-x .
Miah, M.I., Ahmed, S., Zendehboudi, S., 2021. Model development for shear sonic velocity using geophysical log data: Sensitivity analysis and statistical assessment. Journal of Natural Gas Science and Engineering 88, 103778. doi: https://doi.org/10.1016/j.jngse.2020.103778 .
Mohamadian, N., Ghorbani, H., Wood, D.A., Mehrad, M., Davoodi, S., Rashidi, S., Soleimanian, A., Shahvand, A.K., 2021. A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning. Journal of Petroleum Science and Engineering 196, 107811. doi: https://doi.org/10.1016/j.petrol.2020.107811 .
Najibi, A.R., Ghafoori, M., Lashkaripour, G.R., Asef, M.R., 2015. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. Journal of Petroleum Science and Engineering 126, 78-82. doi: https://doi.org/10.1016/j.petrol.2014.12.010 .
Oloruntobi, O., Butt, S., 2020. The shear-wave velocity prediction for sedimentary rocks. Journal of Natural Gas Science and Engineering 76, 103084. doi: https://doi.org/10.1016/j.jngse.2019.103084.
Parvizi, S., Kharrat, R., Asef, M.R., Jahangiry, B., Hashemi, A., 2015. Prediction of the shear wave velocity from compressional wave velocity for Gachsaran Formation. Acta Geophysica 63, 1231-1243. doi: https://link.springer.com/article/10.1515/acgeo-2015-0048 .
Rajabi, M., Bohloli, B., Ahangar, E.G., 2010. Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran). Computers & Geosciences 36, 647-664. doi: https://doi.org/10.1016/j.cageo.2009.09.008 .
Rashidi, S., Mehrad, M., Ghorbani, H., Wood, D.A., Mohamadian, N., Moghadasi, J., Davoodi, S., 2021. Determination of bubble point pressure & oil formation volume factor of crude oils applying multiple hidden layers extreme learning machine algorithms. Journal of Petroleum Science and Engineering, 108425. doi: https://doi.org/10.1016/j.petrol.2021.108425 .
Rezaee, M.R., Ilkhchi, A.K., Barabadi, A., 2007. Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. Journal of Petroleum Science and Engineering 55, 201-212. doi: https://doi.org/10.1016/j.petrol.2006.08.008 .
Rhett, D.W., 1998. Ekofisk revisited: a new model of Ekofisk reservoir geomechanical behavior .OnePetro. doi: https://onepetro.org/conference-paper/SPE-47273-MS .
Seifi, H., Tokhmechi, B., Moradzadeh, A., 2020. Improved estimation of shear-wave velocity by ordered weighted averaging of rock physics models in a carbonate reservoir. Natural Resources Research 29, 2599-2617. doi: https://link.springer.com/article/10.1007/s11053-019-09590-6 .
Sohail, G.M., Hawkes, C.D., 2020. An evaluation of empirical and rock physics models to estimate shear wave velocity in a potential shale gas reservoir using wireline logs. Journal of Petroleum Science and Engineering 185, 106666. doi: https://doi.org/10.1016/j.petrol.2019.106666 .
Sohail, G.M., Hawkes, C.D., Yasin, Q., 2020. An integrated petrophysical and geomechanical characterization of Sembar Shale in the Lower Indus Basin, Pakistan, using well logs and seismic data. Journal of Natural Gas Science and Engineering 78, 103327. doi: https://doi.org/10.1016/j.jngse.2020.103327 .
Tixier, M.P., Loveless, G.W., Anderson, R.A., 1975. Estimation of formation strength from the mechanical-properties log (incudes associated paper 6400). Journal of Petroleum Technology 27, 283-293. doi: https://doi.org/10.2118/4532-PA.
Wang, H.F., 2000. Linear poroelasticity. Princeton, NJ: Princeton University Press. doi :
Wang, J., Cao, J ,.Yuan, S., 2020. Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network. Journal of Petroleum Science and Engineering 194, 107466. doi: https://doi.org/10.1016/j.petrol.2020.107466 .
Wang, J., Wu ,S., Zhao, L., Wang, W., Wei, J., Sun, J., 2019. An effective method for shear-wave velocity prediction in sandstones. Marine Geophysical Research 40, 655-664. doi: https://link.springer.com/article/10.1007/s11001-019-09396-4.
Wood, D.A., 2020. Bakken stratigraphic and type well log learning network exploited to predict and data mine shear wave acoustic velocity. Journal of Applied Geophysics 173, 103936. doi: https://doi.org/10.1016/j.jappgeo.2019.103936 .
Yeom, C.-U., Kwak, K.-C., 2017. Short-term electricity-load forecasting using a TSK-based extreme learning machine with knowledge representation. Energies 10, 1613. doi: https://doi.org/10.3390/en10101613 .