تعیین جذب مطلق همدما در مخازن شیل گازی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ژئوتکنیک، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

تخمین مقدار جذب مطلق در مخازن شیل گازی یکی از کلیدی‌ترین پارامترها است. با توجه به محدودیت‌های موجود، مطالعات آزمایشگاهی قادر به محاسبه جذب مطلق به طور مستقیم نیست و تنها می‌تواند جذب اضافی همدما را مستقیماً اندازه‌گیری کند. همچنین در اکثر مطالعات آزمایشگاهی جذب اضافی همدما تا فشار 15 مگاپاسکال انجام می‌گیرد. در نتیجه برای تبدیل جذب اضافی به مطلق در فشارهای اندازه‌گیری شده و بیش‌تر از آن، از مدل‌های جذب موجود استفاده می‌شود. در این مطالعه با استفاده از شبیه‌سازی مولکولی به شبیه‌سازی سیال متان درون کروژن با سایز منفذ 4 نانومتر در سه دمای 303.15، 333.15 و 363.15 کلوین تا فشار 50 مگاپاسکال پرداخته و سپس دقت مدل‌های جذب موجود برای تخمین جذب مطلق همدما مورد بررسی قرار گرفته است. نتایج شبیه‌سازی مولکولی نشان می‌دهد چگالی جذب شده تابعی از فشار و دما است و همواره این مقدار کمتر از چگالی متان مایع است. نتایج مدل جذب لانگمویر و فوق بحرانی دابینین-رادوشکویچ بیانگر دقت کم هر دو مدل در تخمین مقدار جذب مطلق در تمامی دماها است. در آخر، استفاده از حجم جذب‌شده به دست آمده از شبیه‌سازی مولکولی برای تخمین جذب مطلق در تمامی دماها و فشارها، دارای خطای کمتر از 10 درصد بوده و استفاده از این روش توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of absolute adsorption isotherm in shale gas reservoirs

نویسندگان [English]

  • Hasan Ghasemzadeh
  • Saeed Babaei
Civil Engineering Faculty., K. N. Toosi University of Technology
چکیده [English]

Estimation of absolute adsorption in shale gas reservoirs is one of the key parameters. Experimental studies can only measure the excess adsorption isothermal directly. Also, in most experimental studies, excess adsorption up to a pressure of 15 MPa is measured. As a result, Langmuir and supercritical Dubinin–Radushkevich (SDR) adsorption models are used to convert the excess to absolute adsorption at measured pressures and above. Using hybrid grand canonical Monte Carlo/molecular dynamics (GCMC/MD) simulations, we simulate methane fluid in kerogen with 4 nm pore size at three temperatures of 303.15, 333.15, and 363.15 K up to a pressure of 50 MPa. Then the accuracy of adsorption models to estimate the absolute adsorption is investigated. The molecular simulation results show that the adsorbed density is a function of pressure and temperature and is always less than the liquid methane density. The Langmuir and SDR adsorption models show low accuracy of both models in estimating the absolute adsorption at all temperatures. Finally, using the adsorbed volume obtained from molecular simulation to estimate the absolute adsorption at all temperatures and pressures has an error of less than 10%, and the use of this method is recommended.

کلیدواژه‌ها [English]

  • Shale gas
  • Adsorption
  • Absolute adsorption
  • Kerogen
  • Langmuir
  • Dubinin–Radushkevich
  • Molecular simulation
[1] A. Mahmoud, A. Gowida, M.S. Aljawad, M. Al-Ramadan, A.F. Ibrahim. (2021). Advancement of Hydraulic Fracture Diagnostics in Unconventional Formations, Geofluids.
[2] C.R. Clarkson, B. Haghshenas, A. Ghanizadeh, F. Qanbari, J.D. Williams-Kovacs, N. Riazi, C. Debuhr, H.J. Deglint. (2016). Nanopores to megafractures: Current challenges and methods for shale gas reservoir and hydraulic fracture characterization, Journal of Natural Gas Science and Engineering. 31, 612–657.
[3] Q. Lyu, J. Tan, L. Li, Y. Ju, A. Busch, D.A. Wood, P.G. Ranjith, R. Middleton, B. Shu, C. Hu, Z. Wang, R. Hu. (2021). The role of supercritical carbon dioxide for recovery of shale gas and sequestration in gas shale reservoirs, Energy & Environmental Science. 14, 4203–4227.
[4] Natural Gas. (2022). U.S. Energy Information Administration (EIA). https://www.eia.gov/naturalgas.
[5] Z. Shang, L. Dong, L. Niu, H. Shi (2019). Adsorption of Methane, Nitrogen, and Carbon Dioxide in Atomic-Scale Fractal Nanopores by Monte Carlo Simulation I: Single-Component Adsorption, Energy and Fuels. 33, 10457–10475.
[6] S.R. Etminan, F. Javadpour, B.B. Maini, Z. Chen. (2014). Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen, International Journal of Coal Geology. 123, 10–19.
[7] John B. Curtis. (2002). Fractured shale-gas systems, AAPG Bulletin. 86, 1921–1938.
[8] J. Collell. (2015). Molecular Simulation of Shale Organic Matter. (doctoral dissertation). Université de Pau et des Pays de l’Adour, Pau, France.
[9] H. Zhao, Z. Lai, A. Firoozabadi. (2017). Sorption Hysteresis of Light Hydrocarbons and Carbon Dioxide in Shale and Kerogen, Scientific Reports. 7:1, 1–10.
[10] L. Huang, Z. Ning, H. Lin, W. Zhou, L. Wang, J. Zou, H. Xu. (2021). High-Pressure Sorption of Methane, Ethane, and Their Mixtures on Shales from Sichuan Basin, China, Energy & Fuels. 35, 3989–3999.
[11] J. Zou, R. Rezaee, K. Liu. (2017). Effect of Temperature on Methane Adsorption in Shale Gas Reservoirs, Energy and Fuels. 31, 12081–12092.
[12] M. Shabani, S.A. Moallemi, B.M. Krooss, A. Amann-Hildenbrand, Z. Zamani-Pozveh, H. Ghalavand, R. Littke. (2018). Methane sorption and storage characteristics of organic-rich carbonaceous rocks, Lurestan province, southwest Iran, International Journal of Coal Geology.186, 51–64.
[13] T. Zhao, X. Li, Z. Ning, H. Zhao, M. Li. (2018). Molecular simulation of methane adsorption on type II kerogen with the impact of water content, Journal of Petroleum Science and Engineering. 161, 302–310.
[14] X. Tang, N. Ripepi, K. Luxbacher, E. Pitcher. (2017). Adsorption Models for Methane in Shales: Review, Comparison, and Application, Energy and Fuels. 31, 10787–10801.
[15] Y. Yang, S. Liu. (2020).  Review of Shale Gas Sorption and Its Models, Energy & Fuels. 34, 15502–15524.
[16] W. Pang, Y. Wang, Z. Jin. (2021). Comprehensive Review about Methane Adsorption in Shale Nanoporous Media, Energy & Fuels. 35, 8456–8493.
[17] I. Langmuir. (2002). The adsorption of gases on plane surfaces of glass, mica and platinum., J Am Chem Soc. 40, 1361–1403.
[18] Toth, J. (1971). State Equation of the Solid-Gas Interface Layers, Acta Chim. Hung. 69, 311–328.
[19] R. Sakurovs, S. Day, S. Weir, G. Duffy. (2007).  Application of a Modified Dubinin−Radushkevich Equation to Adsorption of Gases by Coals under Supercritical Conditions, Energy and Fuels. 21,992–997.
[20] H. Ghasemzadeh, S. Babaei, S. Tesson, J. Azamat, M. Ostadhassan. (2021). From excess to absolute adsorption isotherm: The effect of the adsorbed density, Chemical Engineering Journal. 425, 131495.
[21] Y. Wang, Y. Zhu, S. Liu, R. Zhang. (2016). Methane adsorption measurements and modeling for organic-rich marine shale samples, Fuel. 172, 301–309.
[22] M. Meng, R. Zhong, Z. Wei. (2020). Prediction of methane adsorption in shale: Classical models and machine learning based models, Fuel. 278, 118358.
[23] D. Wu, F. Miao, X. Liu, X. Xiao, W. Zhai. (2021). Prediction of high-pressure adsorption of CH4 and CO2 in shale, International Journal of Greenhouse Gas Control. 110, 103440.
[24] S.A. Ghoreishian Amiri, S.A. Sadrnejad, H. Ghasemzadeh. (2017). A hybrid numerical model for multiphase fluid flow in a deformable porous medium, Applied Mathematical Modelling. 45, 881–899.
[25] H. Ghasemzadeh, M.S. Pasand. (2019). Aa elastoplastic multiscale, Multiphysics mixed geomechanical model for oil reservoirs using adaptive mesh refinement methods, International Journal for Multiscale Computational Engineering. 17, 385–409.
[26] H. Ghasemzadeh. (2019). Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area, Oil Geomechanic. 3, 79–99.
[27] S. Alavi. (2020). Molecular Simulations: Fundamentals and Practice. Wiley.
[28] W. Pang, Z. Jin. (2020).  Methane Absolute Adsorption in Kerogen Nanoporous Media With Realistic Continuous Pore Size Distributions, Energy & Fuels. 34, 12158-12172.
[29] Y. Tian, C. Yan, Z. Jin (2017). Characterization of Methane Excess and Absolute Adsorption in Various Clay Nanopores from Molecular Simulation, Scientific Reports. 7, 1–21.
[30] Y. Liu, Y. Zhu, W. Li, J. Xiang, Y. Wang, J. Li, F. Zeng. (2016). Molecular simulation of methane adsorption in shale based on grand canonical Monte Carlo method and pore size distribution, Journal of Natural Gas Science and Engineering. 30, 119–126.
[31] Y. Liu, H.A. Li, Y. Tian, Z. Jin, H. Deng. (2018). Determination of the absolute adsorption/desorption isotherms of CH4 and n-C4H10 on shale from a nano-scale perspective, Fuel. 218, 67–77.
[32] W. Song, J. Yao, J. Ma, A. Li, Y. Li, H. Sun, L. Zhang. (2018). Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems, Fuel. 215,196–203.
[33] W. Jiang, M. Lin. (2018). Molecular dynamics investigation of conversion methods for excess adsorption amount of shale gas, Journal of Natural Gas Science and Engineering. 49, 241–249.
[34] X. Yu, J. Li, Z. Chen, K. Wu, L. Zhang, S. Yang. (2020). Effects of helium adsorption in carbon nanopores on apparent void volumes and excess methane adsorption isotherms, Fuel.  270, 117499.
[35] X. Yu, J. Li, Z. Chen, K. Wu, L. Zhang. (2020). Effects of an adsorbent accessible volume on methane adsorption on shale, Computer Methods in Applied Mechanics and Engineering. 370,113222.
[36] L. Sarkisov, R. Bueno-Perez, M. Sutharson, D. Fairen-Jimenez. (2020).  Materials Informatics with PoreBlazer v4.0 and the CSD MOF Database, Chemistry of Materials. 32, 9849–9867.
[37] M. G. Martin, J. Ilja Siepmann. (1998). Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes, The Journal of Physical Chemistry B. 102, 2569–2577.
[38] J.W. Gibbs. (1878). On the equilibrium of heterogeneous substances, American Journal of Science. 3, 441–458.
[39] H. Swenson, N.P. Stadie. (2019). Langmuir’s Theory of Adsorption: A Centennial Review, Langmuir. 35, 5409–5426.
[40] W.A. Steele. (1973). The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated adsorbed atoms, Surface Science. 36, 317–352.
[41] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications. 271, 108171.
[42] H. Lee, F.A. Shakib, K. Liu, B. Liu, B. Bubach, R.S. Varma, H.W. Jang, M. Shokouhimher, M. Ostadhassan. (2020). Adsorption based realistic molecular model of amorphous kerogen, RSC Advances. 10, 23312–23320.
[43] L. Brochard. (2021). Swelling of Montmorillonite from Molecular Simulations: Hydration Diagram and Confined Water Properties, The Journal of Physical Chemistry C. 125, 15527–15543.
[44] L. Huang, W. Zhou, H. Xu, L. Wang, J. Zou, Q. Zhou. (2021) Dynamic fluid states in organic-inorganic nanocomposite: Implications for shale gas recovery and CO2 sequestration, Chemical Engineering Journal. 411, 128423.
[45] Liu B, Babaei S, Bai L, Tian S, Ghasemzadeh H, Rashidi M, Ostadhassan M. (2022). A dilemma in calculating ethane absolute adsorption in shale gas reservoirs: A theoretical approach. Chemical Engineering Journal. 450, 138242.
[46] S. Nosé. (1998). A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics. 81, 511.
[47] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller. (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics. 21, 1087–1092.
[48] S. Zhou, H. Xue, Y. Ning, W. Guo, Q. Zhang. (2018). Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane, Fuel. 211, 140–148.
[49] T.F. Rexer, E.J. Mathia, A.C. Aplin, K.M. Thomas. (2014). High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens, Energy and Fuels. 28, 2886–2901.
[50] J. Xiong, X. Liu, L. Liang, Q. Zeng. (2017). Methane Adsorption on Carbon Models of the Organic Matter of Organic-Rich Shales, Energy and Fuels. 31, 1489–1501.
[51] J. Li, K. Wu, Z. Chen, W. Wang, B. Yang, K. Wang, J. Luo, R. Yu. (2019). Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems, Applied Energy. 251, 113368.