پیاده سازی الگوریتم نوین "جایگزین بهینه سازی شده شبیه‌ساز" در علوم زمین مطالعه موردی: "تطابق تاریخچه" در یکی از مخازن نفتی جنوب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تهران- دانشگاه صنعتی امیرکبیر، دانشکده مهندسی نفت

2 دانشکده معدن و نفت دانشگاه صنعتی امیر کبیر

چکیده

اخیراً "مدل‌های جایگزین" و معادلات ریاضی به‌جای مدل مخزن واقعی در برخی از حوزه‌های علوم زمین مورد استفاده قرار گرفته است. در این مطالعه، سعی شده است با بهره­گیری از دانش "مدل جایگزین بهینه­سازی شده"، یکی از مهم‌ترین مراحل شناخت دقیق پارامترهای اصلی مخازن در "تطابق تاریخچه" با هدف زمان اجرای کمتر و شتاب بخشی به شبیه‌سازی انجام گیرد. در این مقاله جدیدترین رویکرد مدل جایگزین برای تطابق تاریخچه خودکار در یک میدان بزرگ در جنوب ایران با 14 چاه با متغیرهای پاسخ‌های (تولید نفت، فشار ته چاه و فشار میانگین) استفاده شده است. روشی که به عنوان مدل پروکسی استفاده شده است، ماشین بردار پشتیبان حداقل مربعات است و برای نمونه­گیری اولیه روش CCF بکار گرفته شد. سپس برای پروکسی ساخته شده با استفاده از دو روش نوین بهینه­سازی، الگوریتم ژنتیک و بهینه‌سازی ‌‌ازدحام ذرات، بهینه­سازی انجام شد. روش کار استفاده شده در این مقاله کدنویسی و برنامه‌نویسی در متلب و لینک آن با یکی از مهم‌ترین نرم­افزارهای شبیه­ساز مخزن (اکلیپس) برای بررسی و نهایی‌سازی ‌‌پارامترها بود. در نتیجه، ساخت مدل پروکسی با استفاده از 1086 نمونه برای مجموعه داده‌های آموزشی و آزمایشی موفق عمل کرد. همچنین الگوریتم GA نتایج بهتری نسبت به PSO برای یافتن بهترین راه حل ارائه کرد.

کلیدواژه‌ها


Ahmadi, M.A., & Bahadori, A. (2015). ALSSVM approach for determining well placement and conning phenomena in horizontal wells. Fuel, 153, 276–283.
Al-Thuwaini, J., Zangl, G., & Earl Phelps, R. (2006). Innovative Approach to Assist History Matching Using Artificial Intelligence. Paper presented at the Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands.
Arief, I. H. (2013). Assisted History Matching : A Comprehensive Study of Methodology. Stavanger.
Arwini, S.G., & Stephen, K.D. (2011). Combining Experimental Design with Proxy Derived Sensitivities to Improve Convergence Rates in Seismic History Matching. Paper presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria
Askari Firoozjaee, R., & Khamehchi, E. (2014). A Novel Approach to Assist History Matching Using Artificial Intelligence. Chemical Engineering Communications, 202, 513–519. doi: 10.1080/00986445.2013.852977
Azad, A., & Chalaturnyk, R. (2013). Application of Analytical Proxy Models in Reservoir Estimation for SAGD Process: UTF-Project Case Study SPE-165576-PA.
Bhark, E., & K,B. (2014). Assisted History Matching Benchmarking: Design of Experiments-based Techniques. Paper presented at the SPE Annual Confrence, Amsterdam,Netherlands.
Dehghan Monfared, A., Helalizadeh, A., Parvizi, H., & Zobeidi, K. (2014). A Global Optimization Technique Using Gradient Information for History Matching. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(Taylor & Francis), 1414–1428.
Denney, D. (2010). Pros and Cons of Applying a Proxy Model as a Substitute for Full Reservoir Simulations. Journal of Petroleum Technology, 62(07).
Espinoza, M., Suykens, A.K., & Moor, B.D. (2003). Least Square support Vector Machines and Primal Space Estimation. Paper presented at the 42nd IEEE Conference on Decision and Control, Maui,Hawaii, USA.
Fedutenko, E., Yang, C., Card, C., & Nghiem, L. X. (2013). Time-Dependent Proxy Modeling of SAGD Process Paper presented at the SPE Heavy Oil Conference-Canada, Calgary, Alberta, Canada
Fedutenko, E., Yang, C., Card, C., & Nghiem, L. X. (2014). Time-Dependent Neural Network Based Proxy Modeling of SAGD Process. Paper presented at the SPE Heavy Oil Conference-Canada, Calgary, Alberta, Canada
Ghasemi, M., & Whitson, C. H. (2011). Modeling SAGD with a Black-Oil Proxy. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA
He, J., Xie, J., Wen, X.-H., & Chen, W. (2015). Improved Proxy For History Matching Using Proxy-for-data Approach And Reduced Order Modeling. Paper presented at the SPE Western Regional Meeting, California, USA.
Mohaghegh, S.D., Abdulla, F., Gaskari, R., & Maysami, M. (2015). Smart Proxy: An Innovative Reservoir Management Tool; Case Study of a Giant Mature Oilfield in the UAE. Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE.
Mohaghegh, S.D., & Abdulla, F.A.S. (2014). Production Management Decision Analysis Using AI-Based Proxy Modeling of Reservoir Simulations – A Look-Back Case Study. Paper presented at the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands
Mohaghegh, S.D., Liu, J., Gaskari, R., Maysami, M., & Olukoko, O. (2012). Application of Well-Based Surrogate Reservoir Models (SRMs) to Two Offshore Fields in Saudi Arabia, Case Study. Paper presented at the SPE Western North American Regional Meeting, Bakersfield, California, USA.
Mohaghegh, S.D., Modavi, A., Hafez, M., & Haajizadeh. Y. (2006). Development of Surrogate Reservoir Models (SRM) For Fast Track Analysis of Complex Reservoirs Paper presented at the 2006 SPE Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands.
Mohamed Al-akhdar, S., Yu Ding, D., Dambrine, M., & Jourdan, A. (2012). An Integrated Parameterization and Optimization Methodology for Assisted History Matching: Application to Libyan Field Case. Paper presented at the North Africa Technical Conference and Exhibition, Cairo, Egypt.
Panja, P., Pathak, M., Velasco, R., & Deo, M. (2016). Least Square Support Vector Machine :An Emerging Tool for Data Analysis. Paper presented at the SPE Low Perm Symposium, Denver, Colorado, USA.
Ramgulam, A. (2006). Utilization Of Artificial Neural Networks In The Optimization Of History Matching (Master of Science), Pennsylvania State University.
Shahkarami, A. (2012). Artificial Intelligence Assisted History Matching – Proof Of Concept. (Master of Science),West Virginia University.
Shahkarami, A., Mohaghegh, S.D., & Hajizadeh, Y. (2015). Assisted History Matching Using Pattern Recognition Technology. Paper presented at the Digital Energy Confrence, Texas,USA.
Shahkarami, A., Mohaghegh, S.D., Gholami, V., & Haghighat, S.A. (2014). Artificial Intelligence (AI) Assisted History Matching. Paper presented at the SPE Western North American and Rocky Mountain Joint Regional Meetingheld, Denver, Colorado, USA.
Silva, P. C., Maschio, C., & Schiozer, D. J. (2008). Application of Neural Network and Global Optimization in History Matching. Journal of Canadian Petroleum Technology.
Suykens, A.K., Gestel, J., Brabanter, T.V., Moor,J.D., & walle, J.V. (2002). Least Square Support Vector Machines. Singapore World Scientific Publishing Co.
Van Doren, J., Van Essen, G., Wilson, O., Zijlstra, E., & (2012). A Comprehensive Workflow for Assisted History Matching Applied to a complex Mature Reservoir. Paper presented at the EAGE Annual Confrence, Copenhagen,Denmark.
Wang, J., & Buckley, J.S. (2006). Automatic History Matching Using Differential Evoluttion Algorithm Paper presented at the International Symposium of the Society of Core Analysts, Trondheim, Norway.
Wang, S., Zhao, G., Xu, L., Guo, D., & Sun, S. (2005). Optimization for Automatic History Matching. International Journal Of Numerical AnalysisAnd Modeling, 2, 131-137.
Yao, S., & Prasad, V. (2015). Proxy Modeling of the Production Profiles of SAGD Reservoirs Based on System Identification. Industrial & Engineering Chemistry Research.
Zangl, G., Graf, T., & Al-Kinani, A. (2006). Proxy Modeling in Production Optimization. Paper presented at the SPE Europec/EAGE Annual Conference and Exhibition, Vienna, Austria.