پیاده سازی الگوریتم بهینه سازی آموزش و یادگیری برای تخمین سرعت امواج برشی از داده های چاه نگاری در دو مطالعه موردی ماسه سنگی و کربناته

نوع مقاله: مقاله پژوهشی

نویسندگان

1 انستیتو مهندسی نفت . دانشکده فنی دانشگاه تهران

2 عضو هیئت علمی- انستیتو مهندسی نفت- دانشگاه تهران

چکیده

سرعت امواج لرزه ­ای تراکمی و برشی در کنار داده ­های پتروفیزیکی اطلاعات ارزشمندی را در مراحل اکتشاف و توسعه میادین نفتی فراهم می‌کنند. برخلاف سرعت امواج تراکمی که در اکثر مواقع توسط ابزار نمودارگیری سونیک اندازه‌گیری می‌شود، نمودار سرعت امواج برشی به علت هزینه‌ی بالا تنها در تعداد محدودی از چاه­های یک میدان برداشت و ثبت می­گردد. بنابراین بایستی سرعت این امواج را با استفاده از روش‌های دیگری تخمین زد. روابط تجربی متعددی ارائه‌ شده است که سرعت امواج برشی را به پارامترهای پتروفیزیکی و اندازه‌گیری‌های چاه ­نگاری مربوط می‌کنند که معمولاً کارائی موردی دارند. یکی از روش‌های کارآمد برای پیش ­بینی سرعت امواج برشی، استفاده از سیستم‌های هوشمند است. در این مقاله علاوه بر استفاده از روش تجربی گرینبرگ-کاستاگنا، از الگوریتم بهینه‌سازی مبتنی بر آموزش و یادگیری برای ساخت یک مدل خطی و یک مدل غیرخطی برای پیش ­بینی سرعت امواج برشی در یک سازند مخزنی ماسه‌سنگی در یکی از میادین فراساحلی واقع در استرالیای غربی و یک سازند مخزنی کربناته در یکی از میادین خشکی واقع در جنوب غرب ایران استفاده ‌شده است. مقدار خطا و ضریب همبستگی نتایج به دست آمده از الگوریتم بهینه­ سازی مبتنی بر آموزش و یادگیری نشان ­دهنده کارائی مطلوب این الگوریتم است. نتایج مدل خطی و غیر خطی ساخته ­شده به هم نزدیک است با این تفاوت که مدل خطی در مدت زمان کمتری اجرا می­شود. مدل خطی این الگوریتم با خطای 3/2 درصدی و ضریب همبستگی 82/0 در سازند ماسه سنگی و خطای 3/3 درصدی و ضریب همبستگی 95/0 در سازند کربناته، عملکرد مناسبی در هر دو مطالعه موردی داشته و می­تواند به عنوان روشی کارآمد برای تخمین سرعت موج برشی استفاده گردد.

کلیدواژه‌ها