شبیه‌سازی عددی اثر زاویه شیب عقب تیغه PDC بر روی مکانیزم شکست سنگ با استفاده از روش المان مجزا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیئت علمی دانشکده مهندسی معدن و متالورژی دانشگاه یزد

2 دانشجوی کارشناسی ارشد دانشکده مهندسی معدن و متالورژی دانشگاه یزد

3 استادیار دانشکده مهندسی معدن و متالورژی دانشگاه یزد

4 دانشکده مهندسی معدن و متالورژی دانشگاه یزد

5 مهندس ارشد برنامه ریزی حفاری ، معاونت فنی حفاری شرکت ملی مناطق نفتخیز جنوب

چکیده

در صنعت نفت، عمران و معدن، از انواع مختلف ابزار برش جهت استخراج مواد سنگی استفاده می‌شود. از این‌ رو بررسی عکس العمل ابزار برش با سنگ می‌تواند راهکاری مناسب جهت تحلیل مسایل مرتبط با شکست‌های بوجود آمده در آن در زمان حفاری باشد. یکی از عوامل موثر بر مکانیزم شکست سنگ در زمان حفاری، هندسه‌ای ابزار برش (تیغه برش) است که تاثیر به‌سزایی در انرژی ویژه MSE ( انرژی مورد نیاز برای حفر حجم واحدی از سنگ) مصرفی دارد. روش عددی المان‌مجزا یکی از پیشرفته‌ترین روش‌ها برای مدل کردن مسایلی است که با کرنش و تغییرشکل بالا همراه است. هدف اصلی این تحقیق شبیه‌سازی برش سنگ و بررسی تاثیر زاویه شیب عقب در عملکرد تیغه PDC بر روی دو نمونه سنگ رسوبی (ماسه سنگ و سنگ آهک) است. بنابراین از نرم افزار عددی کد جریان اجزاء (PFC2D) که رفتار مکانیکی مواد دانه‌ای را با روش المان‌های مجزا (DEM) شبیه‌سازی می‌کند، استفاده شده است. بر اساس نتایج به دست آمده، سنگ آهک نسبت به ماسه‌سنگ به انرژی ویژه بیشتری نیاز دارد که دلیل آن می‌تواند مقاومت بیشتر سنگ آهک نسبت به ماسه سنگ باشد. اما افزایش زاویه شیب عقب از 10 درجه به 40 درجه باعث افزایش انرژی ویژه مصرفی در هر دو نوع سنگ می‌شود. در حقیقت نیروی افقی برش عامل اصلی تاثیر گذار در مقدار انرژی ویژه است . علاوه بر این نتایج بررسی‌های انجام شده نشان می‌دهد که مکانیزیم جریان مواد خرد شده در جلوی تیغه‌ی برش تابعی از هندسه‌‌ی تیغه و زاویه اصطکاک بین تیغه و ذرات خرد شده سنگ است که از جمله عوامل موثر در مقدار انرژی ویژه محسوب می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical simulation the effect of back rake angle PDC cutter on the rock fracture mechanism using discrete element method

نویسندگان [English]

  • Mohammad Fatehi Marji 1
  • Amirhossien Mazrouie 2
  • Mehdi Najafi 3
  • Mohsen Mohebi 4
  • Mohajer Ebadi 5
1 Department of Mining and Metallurgy, Engineering Faculty, Yazd University
2 Student of Mining Engineering of Yazd university
3 Assistant Professor of Faculty of Mining and Metallurgy Engineering of Yazd university
4 Faculty of Mining and Metallurgy Engineering of Yazd university
5 Master of Planning for Drilling, National Iranian South Oilfields Company
چکیده [English]

In the oil, construction and mining industry, different types of cutting tools using to extract rock materials. Hence, the investigation of the reaction of the cutting tool with the stone can be a suitable method for analyzing the problems associated with the failure occurred at the time of drilling. One of the factors affecting rock failure mechanism At the time of drilling Geometry of the cutting tool (cutter), Which has a significant impact on Mechanical specific energy (energy required to cut through a unit volume of rock). Numerical methods DEM One of the most advanced methods for modeling issues Which is accompanied by a strain and a deformation. The main goal of this research is rock cutting simulation and examining the effect of the bake rake angle on the cutter PDC performance On two samples of sedimentary rock (sand stone, limestone). The instrument used in this study numerical software particle flow code (PFC2D) which simulates the mechanical behavior of material using a distinct elemental method (DEM), Based on the results, limestone needs more Mechanical specific energy than sandstone, This can be due to more limestone resistance to sandstone. But increasing the back rake angle from 10 degrees to 40 degrees increases the Mechanical specific energy consumption. In fact, horizontal force cutting is a major factor affecting the amount of Mechanical specific energy. In addition, the results of the surveys show The mechanism of the flow of crushed material in front of the cutter blades Function of cutter geometry and the friction angle between the cutter and the crushed particles. and is one of the effective factors in the amount of Mechanical special energy.

کلیدواژه‌ها [English]

  • "Failure mechanism"
  • "Mechanical specific energy"
  • "Numerical methods DEM"
  • " PDC cutter"
  • "back rake angle"
Akbari, B., & Miska, S. (2016). The effects of chamfer and back rake angle on PDC cutters friction. Journal of Natural Gas Science and Engineering, 35, 347-353.
Akbari, B., Butt, S. D., Munaswamy, K., & Arvani, F. (2011, January). Dynamic single PDC cutter rock drilling modeling and simulations focusing on rate of penetration using distinct element method. In 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
Akbari, B., Miska, S. Z., Yu, M., & Rahmani, R. (2014, August). The effects of size, chamfer geometry, and back rake angle on frictional response of PDC cutters. In 48th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
Bourgoyne, A. T., Millheim, K. K., Chenevert, M. E., & Young, F. S. (1991). Applied drilling engineering (Vol. 2, pp. 137-144). Richardson, TX: Society of Petroleum Engineers.
Cho, H. (1997). Effects of Cutting Forces on Mechanical Rock Properties Using a Single Polycrystalline Diamond Compact (PDC) Drag Bit (Doctoral dissertation, University of Oklahoma).
Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. geot echnique, 29(1), 47-65.
Glowka, D. A. (1989). Use of single-cutter data in the analysis of PDC bit designs: Part 1-development of a PDC cutting force model. Journal of Petroleum Technology, 41(08), 797-849.
Haeri, H., & Marji, M. F. (2016). Simulating the crack propagation and cracks coalescence underneath TBM disc cutters. Arabian Journal of Geosciences, 9(2), 124.
He, X., Xu, C., Peng, K., & Huang, G. (2017). On the critical failure mode transition depth for rock cutting with different back rake angles. Tunnelling and Underground Space Technology, 63, 95-105.
Hentz, S., Donzé, F. V., & Daudeville, L. (2004). Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Computers & structures, 82(29), 2509-2524.
Hibbs, L. E., & Flom, D. G. (1978). Diamond compact cutter studies for geothermal bit design. Journal of Pressure Vessel Technology, 100(4), 406-416.
Hough Jr, C. L. (1986). The Effect of Back Rake Angle on the Performance of Small-Diameter Polycrystalline Diamond Rock Bits: ANOVA Tests. ASME J. Energy Resour. Technol, 108(4), 305-309.
Hosseini_Nasab, H., & Fatehi Marji, M. (2007). A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting. Journal of Mechanics of Materials and Structures, 2(3), 439-458.
Huang, H., Detournay, E., & Bellier, B. (1999). Discrete element modelling of rock cutting. Rock Mechanics for Industry, 1(1), 123-130.
Huang, H., Lecampion, B., & Detournay, E. (2013). Discrete element modeling of tool‐rock interaction I: rock cutting. International Journal for Numerical and Analytical Methods in Geomechanics ,37(13), 1913 1929.                                                                                                                                                                                                                                                                                                                                  Itasca Consulting Group Inc.; 2008; “PFC2D Manual”.
Jaime, M. C., Zhou, Y., Lin, J. S., & Gamwo, I. K. (2015). Finite element modeling of rock cutting and its fragmentation process. International Journal of Rock Mechanics and Mining Sciences, 80, 137-146.
Joodi, B., Sarmadivaleh, M., Rasouli, V., & Nabipour, A. (2012). Simulation of the cutting action of a single PDC cutter using DEM. WIT Transactions on Engineering Sciences, 81, 143-150.
Karadzhova, G. N. (2014). Drilling efficiency and stability comparison between Tricone, PDC and Kymera drill bits (Master's thesis, University of Stavanger, Norway).
Kerr, C. J. (1988). PDC drill bit design and field application evolution. Journal of petroleum technology,40(03), 327-332.
Khorshidian, H., Mozaffari, M., & Butt, S. D. (2012, January). The Role of Natural Vibrations in Penetration Mechanism of a single PDC cutter. In 46th US Rock mechanics/geomechanics symposium. American Rock Mechanics Association.
Marji, M. F. (2015). Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method. Journal of Central South University, 22(3),1045-1054.
Menezes, P. L., Lovell, M. R., Avdeev, I. V., & Higgs, C. F. (2014). Studies on the formation of discontinuous rock fragments during cutting operation. International Journal of Rock Mechanics and Mining Sciences, 71, 131-142.
Pierry, J., & Charlier, R. (1994, January). Finite element modelling of shear band localisation and application to rock cutting by a PDC tool. In Rock Mechanics in Petroleum Engineering. Society of Petroleum Engineers.
Rafatian, N., Miska, S. Z., Ledgerwood, L. W., Yu, M., Ahmed, R., & Takach, N. E. (2010). Experimental study of MSE of a single PDC cutter interacting with rock under simulated pressurized conditions. SPE Drilling & Completion, 25(01), 10-18.
Rajabov, V., Miska, S. Z., Mortimer, L., Yu, M., & Ozbayoglu, M. E. (2012, January). The effects of back rake and side rake angles on mechanical specific energy of single PDC cutters with selected rocks at varying depth of cuts and confining pressures. In IADC/SPE Drilling Conference and Exhibition. Society of Petroleum Engineers.
Saouma, V. E., & Kleinosky, M. J. (1984, January). Finite element simulation of rock cutting: a fracture mechanics approach. In The 25th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
Teale, R. (1965, March). The concept of specific energy in rock drilling. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 2, No. 1, pp. 57-73). Pergamon