تعیین وزن بهینه گل برای حفاری چاه قائم در حضور شکستگی‌ها: مطالعه موردی چاه SIE-04 در میدان نفتی سیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 معدن، مکانیک سنگ، صنعتی امیر کبیر، تهران، ایران

2 دکتری ژئومکانیک، دانشگاه ارومیه

3 اداره زمین شناسی، شرکت نفت فلات قاره، تهران، ایران

10.22107/jpg.2019.199176.1103

چکیده

ارزیابی پایداری چاه در مرحله اول به‌منظور تعیین پنجره ایمن وزن گل حفاری است. تعیین حد پایین فشار گل حفاری به‌منظور جلوگیری از وقوع شکست برشی در دیواره چاه و حد بالای فشار گل به‌منظور جلوگیری از وقوع شکست کششی ( شکست هیدرولیکی)، بر اساس گرادیان شکست برشی (SFG) و گرادیان شکستگی (FG) انجام می‌شود. در این مقاله به‌منظور بررسی اثر حضور شکستگی‌ها در مکانیسم‌های شکست چاه و تعیین پنجره ایمن گل حفاری، روابط تحلیلی و مدل‌سازی عددی به روش المان‌مجزا ارائه‌شده است. برای این منظور از معیار موهر کولمب – جیگر به‌منظور بررسی شکست برشی با در نظر گرفتن اثر حضور ناپیوستگی‌ها در مجاورت دیواره چاه استفاده‌شده است. نتایج حاصل از این بررسی نشان داد که در بازه‌های مشخصی از (β) که معرف نحوه جهت‌گیری ناپیوستگی در مقایسه با امتداد تنش افقی بیشینه است، حضور شکستگی‌ها اثری بر مقاومت نهایی توده سنگ نخواهد داشت. همچنین برخلاف این تصور که شکست برشی در امتداد تنش افقی کمینه رخ می‌دهد (در این مقاله منظور برای حالتی است که θ=0)، در حالتی که اثر حضور ناپیوستگی‌ها در نظر گرفته شود، بیشترین فشار گل موردنیاز به‌منظور جلوگیری از شکست و لغزش در امتداد چاه در زاویه (β=45+ϕ_w/2=52.25) و(θ=84.25) است. همچنین در بازه‌ی (17.5≤θ≤46.5) شکستگی‌ها اثر در مقاومت نهایی شکست نخواهند داشت. فشار گل عملیاتی برای چاه موردنظر بر اساس گزارش‌های حفاری شرکت نفت فلات قاره ( Mpa) است. بر اساس روابط تحلیلی این فشار ( Mpa) تعیین‌شده است. نتایج حاصل از مدل‌سازی عددی به روش المان‌مجزا نشان داد که گسترش زون شکست پلاستیک، بیشترین جابجایی دیواره، لغزش در امتداد شکستگی‌ها و شکست‌های کششی در دو فشار تعیین‌شده تقریباً مشابه است. در حالتی که نسبت تنش افقی بیشینه به کمینه برابر با (σ_H/σ_h =1.65) در نظر گرفته شود، لغزش در امتداد شکستگی‌ها و گسترش شکستگی‌ها (زون شکست پلاستیک) در مجاورت چاه بیشتر است.

کلیدواژه‌ها


Abdideh, M. a. (2013). Estimating the reservoir permeability and fracture density using petrophysical logs in Marun oil field (SW Iran). Petroleum Science and Technology, 1048-1056.
Almagro, S. P. (2014). Sealing fractures: Advances in lost circulation control treatments. Oilfield Review, 4-13. Retrieved from Schlumberger.
Amadei, B. (1996). Importance of anisotropy when estimating and measuring in situ stresses in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 293-325.
Ambrose, J. (2014). Failure of anisotropic shales under triaxial stress conditions. Imperial College London.
Baecher, G. B. (1983). Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology, 329-348.
Bour, O. a. (2002). A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). Journal of Geophysical Research: Solid Earth, ETG-4.
Cao, N. a. (2019). Stress-Dependent Permeability of Fractures in Tight Reservoirs. Energies, 117.
Cappa, F. a.F. (2006). Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. International Journal of Rock Mechanics and Mining Sciences, 1062-1082.
Deangeli, C. a. (2018). Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks. Energies, 1944.
Fjar, E. a. (2008). Petroleum related rock mechanics. Elsevier.
Haimson, B. a. (2003). ISRM suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics and Mining Sciences, 1011-1020.
Halliburton. (2018). Retrieved from Halliburton: https://www.halliburton.com/en-US/default.html
Han, G. a. (2003). Description of fluid flow around a wellbore with stress-dependent porosity and permeability. Journal of Petroleum science and engineering, 1-16.
Hart, R. (2003). Enhancing rock stress understanding through numerical analysis. International journal of rock mechanics and mining sciences, 1089-1097.
Itasca. (2016). 3DEC User Manual Version 5.2. Minneapolis: Itasca Consulting Group.
Jaeger, J. a. (2007). Fundamentals of rock mechanics, 4th edn Blackwell. Maiden, MA.
Karatela, E. a. (2016). Study on effect of in-situ stress ratio and discontinuities orientation on borehole stability in heavily fractured rocks using discrete element method. Journal of Petroleum Science and Engineering, 139, 94–103.
Labenski, F. a. (2003). Drilling Fluids Approaches for Control of Wellbore Instability in Fractured Formations. SPE/IADC Middle East Drilling Technology Conference and Exhibition. Abu Dhabi: Society of Petroleum Engineers.
Lang, J. a. (2011). Wellbore stability modeling and real-time surveillance for deepwater drilling to weak bedding planes and depleted reservoirs. SPE/IADC Drilling Conference and Exhibition. Society of Petroleum Engineers.
Lei, Q. a.P.F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 151-176.
Li, S. a. (2012). Pore-pressure and wellbore-stability prediction to increase drilling efficiency. Journal of Petroleum Technology, 64, 98-101.
Liu, G. a. (2011). Strength variation and deformational behavior in anisotropic granitic mylonites under high-temperature and-pressure conditions-An experimental study. Journal of Structural Geology, 21-34.
Mansour, A. a. (2019). Smart lost circulation materials for productive zones. Journal of Petroleum Exploration and Production Technology, 281-296.
Meng, M. a. (2019). Wellbore stability in naturally fractured formations featuring dual-porosity/singlepermeability and finite radial fluid discharge. Journal of Petroleum Science and Engineering, 790-803.
Meng, Z. a. (2011). In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin. International Journal of Rock Mechanics and Mining Sciences, 122-131.
Min, K.B. a.F. (2004). Stress-dependent permeability of fractured rock masses: a numerical study. International Journal of Rock Mechanics and Mining Sciences, 1191-1210.
Nagel, N. a.N. (2013). Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock mechanics and rock engineering, 581-609.
Naumann, M. a. (2008). Experimental investigations on anisotropy in dilatancy, failure and creep of Opalinus Clay}. Physics and Chemistry of the Earth, Parts A/B/C, 889-895.
Peng, S. a. (2007). Engineering Geology for Underground Rocks. New York: Springer Science & Business Media.
Salehi, S. a. (2010). Numerical simulations of wellbore stability in under-balanced-drilling wells. Journal of Petroleum Science and Engineering, 229-235.
Sapigni, M. a. (2003). Engineering geological characterization and comparison of predicted and measured performance of a cavern in the Italian Alps. Engineering geology, 47-62.
Taheri, A. (2018). Three-dimensional hydro-mechanical model of borehole in fractured rock mass using discrete element method. Journal of Natural Gas Science and Engineering, 53, 263–275
Tour, J. M. (2012). Graphene compositions and drilling fluids derived therefrom. United States Patent and Trademark Office.
Valenti, N. P. (2002). A unified theory on residual oil saturation and irreducible water saturation. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Yousefian, H. a. (2018). Numerical simulation of a wellbore stability in an Iranian oilfield utilizing core data. Journal of Petroleum Science and Engineering, 168, 577-592.
Zhang. (2011). Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth-Science Reviews, 50-63.
Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. International journal of rock mechanics and mining sciences, 160-170.
Zhang, J. a. (2008). Casing ultradeep, ultralong salt sections in deep water: A case study for failure diagnosis and risk mitigation in record-depth well. SPE annual technical conference and exhibition. Society of Petroleum Engineers.
Zhang, J. a. (2010). Discussion on “Integrating borehole-breakout dimensions, strength criteria, and leakoff test results, to constrain the state of stress across the Chelungpu Fault, Taiwan”. Tectonophysics, 295-298.
Zhang, J. a.C. (2002). Borehole stability in naturally deformable fractured reservoirs-a fully coupled approach. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Zhang, X. a. (1999). Numerical modelling of wellbore behaviour in fractured rock masses. Journal of Petroleum Science and Engineering, 95-115.
Zhang, Z. a. (2018). Effects of stress-dependent permeability on well performance of ultra-low permeability oil reservoir in China. Journal of Petroleum Exploration and Production Technology, 565-575.