مطالعه اثر حضور پایدار کننده بر نحوه تمیزکاری فضای دالیزی در یک فلولوپ آزمایشگاهی و ساخت مدل شبیه سازی شده آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نفت امیرکبیر

2 دانشکده مهندسی نفت

3 دانشگاه صنعتی امیرکبیر دانشکده معدن و متالورژی

10.22107/jpg.2021.229874.1122

چکیده

هدف از تمیزسازی چاه، بهبود روند حمل کنده‌های حفاری به سطح در حین عملیات حفاری است. تمیزسازی ناکافی منجر به مسدود شدن چاه، گیر لوله‌های حفاری، هرزروی سیال حفاری، افزایش گشتاور و کشش و بریدن رشته حفاری می‌شود. همه این مشکلات باعث افزایش زمان‌های غیر تولیدی و درنتیجه منجر به افزایش زمان و هزینه‌های حفاری می‌شود. پارامترهای متعددی از جمله خواص سیال حفاری، خواص کنده‌های حفاری، آرایش مجموعه ته چاهی، آرایش نازل‌های مته حفاری، زاویه انحراف چاه، دبی جریان سیال حفاری و نرخ نفوذ مته حفاری بر تمیزسازی چاه اثرگذارند. در این مقاله تلاش شده جدا از نقش کلیدی پایدار کننده‌ها در زاویه‌سازی، زاویه‌اندازی و تثبیت آن، به بررسی آزمایشگاهی اثر حضور پایدارکننده حفاری در مکان‌های مختلف مجموعه ته‌چاهی و زوایای انحراف مختلف چاه بر تمیزسازی چاه با استفاده از شبیه ساز آزمایشگاهی جریان در حلقه‌ی بسته پرداخته شده است. در جهت تحقق این امر یک پایدارکننده با چهار تیغه مستقیم در مقیاس آزمایشگاهی طراحی و ساخته شد. تعدادی آزمایش با حضور پایدارکننده در دو آرایش نزدیک و دور از مته در زوایای انحراف متفاوت انجام شد و در نهایت تلاش شد تا با استفاده از داده‌های حاصله، مدلی شبیه ساز با استفاده از نرم افزار فلوئنت ساخته شود تا در آینده مورد استفاده قرار گیرد. با توجه به نتایج بدست آمده از کارهای آزمایشگاهی، حضور پایدارکننده حفاری نقش بسیار زیادی در بهبود فرآیند حمل کنده‌ و در نتیجه تمیزسازی موثر چاه در زوایای بحرانی ایفا می‌کند.

کلیدواژه‌ها


Akhshik, S. Behzad, M. & Rajabi, M. (2015). CFD–DEM approach to investigate the effect of drill pipe rotation on cuttings transport behavior. Journal of Petroleum Science and Engineering, 127, 229-244.
Azar, J. J. & Sanchez, R. A. (1997, January). Important issues in cuttings transport for drilling directional wells. In Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers.
Bilgesu, H. I. Mishra, N. & Ameri, S. (2007, January). Understanding the effect of drilling parameters on hole cleaning in horizontal and deviated wellbores using computational fluid dynamics. In Eastern
Regional Meeting. Society of Petroleum Engineers.
Cornelissen, J. T. Taghipour, F. Escudié, R. Ellis, N. & Grace, J. R. (2007). CFD modelling of a liquid– solid fluidized bed. Chemical Engineering Science, 62(22), 6334-6348.
Dehvedar, M. & Moarefvand, P. (2019). Detecting and drilling in critical inclination window in slant wells by means of a two phase liquid-solid CFD model and experimental study. Kuwait Journal of Science, 46(2).
Dehvedar, M. Moarefvand, P. & Kiyani, A. R. (2019). A Liquid-Solid Two-phase Flow Computational Fluid Dynamic Modelling of the Operational Characteristics Effects on the Cleaning Time of a Circulating Flow Loop. South African Journal of Chemistry, 72, 67-79.
Dehvedar, M. Moarefvand, P. Kiyani, A. R. & Mansouri, A. R. (2019). Using an experimental drilling simulator to study operational parameters in drilled-cutting transport efficiency. Journal of Mining and Environment, 10(2), 417-428.
Egenti, N. B. (2014, August). Understanding drill-cuttings transportation in deviated and horizontal wells. In SPE Nigeria annual international conference and exhibition. Society of Petroleum Engineers.
GhasemiKafrudi, E. & Hashemabadi, S. H. (2016). Numerical study on cuttings transport in vertical wells with eccentric drillpipe. Journal of Petroleum Science and Engineering, 140, 85-96.
Duan, M. Miska, S. Z. Yu, M. Takach, N. E. Ahmed, R. M. & Zettner, C. M. (2009). Critical conditions for effective sand-sized solids transport in horizontal and high-angle wells. SPE Drilling & Completion, 24(02), 229-238.
Han, S. M. Woo, N. S. & Kim, Y. J. (2016). A Study of the Particle Transport in the Non-Newtonian Fluid with Inclined Annulus. Asia-pacific Journal of Modeling and Simulation for Mechanical System Design and Analysis, 1(1), 23-28.
Huang, X. (2011). CFD modeling of liquid–solid fluidization: Effect of drag correlation and added mass force. Particuology, 9(4), 441-445.
Inglis, T. (2013). Directional drilling (Vol. 2). Springer Science & Business Media.
Kamyab, M. & Rasouli, V. (2016). Experimental and numerical simulation of cuttings transportation in coiled tubing drilling. Journal of Natural Gas Science and Engineering, 29, 284-302.
Li, J. & Walker, S. (2001). Sensitivity analysis of hole cleaning parameters in directional wells. SPE Journal, 6(04), 356-363.
McCormick, J. E. Osorio, G. Andachi, J. H. & Barth, M. E. (2011, January). Adjustable gauge stabilizer and torque reduction tools reduce overall drilling times by 20%: a case study. In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers.
O'Bryan, P. L. & Huston, C. W. (1990, January). A study of the effects of bit gauge length and stabilizer placement on the build and drop tendencies of PDC bits. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Okrajni, S. & Azar, J. J. (1986). The effects of mud rheology on annular hole cleaning in directional wells. SPE Drilling Engineering, 1(04), 297-308.
Pastusek, P. E. (2018, March). Stabilizer Selection Based on Physics and Lessons Learned. In IADC/SPE Drilling Conference and Exhibition. Society of Petroleum Engineers.
Radford, S. R. Jenkins, M. A. & Li, T. (2009, January). Novel concentric expandable stabilizer results in increased penetration rates and drilling efficiency with reduced vibration. In SPE/IADC drilling conference and exhibition. Society of Petroleum Engineers.
Richard S. Carden, R. D. (2007). Horizontal and Directional Drilling. Tulsa, Oklahoma: Petroskills, LLC. AN OGCI Company.
Riera, J. Zeppieri, S. & Derjani-Bayeh, S. (2014). Hydrodynamic study of a multiphase spouted column. Fuel, 138, 183-192.
Smith. (1982). Drillind Assembly Handbook. Houston, Texas: DrilCo.
TaheriShakib, J. Jalalifar, H. & Fatehirad, M. (2012). Design of Continuous Gauge Near-Bit Stabilizer, Using Optimized Hydraulics and Gauge Geometry in Mishan andAghajari Formation. Journal of Chemical and Petroleum Engineering, 46(1), 31-39.
Tri-Wave Drilling Tools Products- Integral Spiral Blade Stabilizerhttp://www.triwaveusa.com/products6.html
Tripathy, A. Bagchi, S. Biswal, S. K. & Meikap, B. C. (2017). Study of particle hydrodynamics and misplacement in liquid–solid fluidized bed separator. Chemical engineering research and design, 117, 520-532.
Uddin, H. Choudhury, N. R. & Ansari, U. (2016, May). A Computational Study of Packoff Using a Combined Drill Bit Stabilizer Particle Tracking Simulation. In SPE Western Regional Meeting. Society of Petroleum Engineers.
Vieira Neto, J. L. Martins, A. L. Ataide, C. H. & Barrozo, M. A. (2012). Non‐Newtonian Flows in Annuli with Variable Eccentric Motion of the Inner Tube. Chemical engineering & technology, 35(11), 1981-1988.
Wiley, C. (1965, January). The Use of Near-bit Stabilizer-sub Assemblies for the Control of Hole Deviation. In Drilling and Production Practice. American Petroleum Institute.
Xiaofeng, S. Tie, Y. Wei, L. & Yanze, W. (2013). Study on Cuttings Transport Efficiency Affected by Stabilizer’s Blade Shape in Vertical Wells. The Open Petroleum Engineering Journal, 6(1).
Zhang, K. Wu, G. Brandani, S. Chen, H. & Yang, Y. (2012). CFD simulation of dynamic characteristics in liquid–solid fluidized beds. Powder technology, 227, 104-110.