بررسی اثرات حرارتی بر گسترش شکست هیدرولیکی و پاسخ مدل عددی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران.

2 دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

10.22107/jpg.2021.240693.1125

چکیده

در بسیاری از زمینه‌‌های ژئومکانیک از جمله شکست هیدرولیکی در مخازن نفت و گاز عمیق، استخراج انرژی زمین‌گرمایی صرف نظر از اثرات گرمایی می‌تواند موجب خطای قابل ملاحظه در نتایج شود. بهره‌برداری و انگیزش مخازن نفت و گاز نامتداول بشدت وابسته به کارآیی عملیات شکست هیدرولیکی (HF) اجرا شده در چاه استخراجی است. در این عملیات شبکه‌ای از شکستگی‌ها ایجاد می‌شود که وظیفه افزایش هدایت‌پذیری سازند مخزنی اطراف چاه را بر عهده دارد. این شکستگی‌ها موجب افزایش جریان و دبی سیال به درون چاه بخصوص در مخازن با نفوذپذیری پایین می‌شوند. درک صحیح و کامل رفتار HF و شکستگی‌های ایجاد شده و رابطه آنها با میزان افزایش بهره‌وری موجب کاهش هزینه‌های سنگین عملیات شکست هیدرولیکی می‌شود. در این پژوهش اثرات گرمایی بصورت کوپل بر گسترش شکست هیدرولیکی بررسی می‌شود. برای اینکار از روش عددی ناپیوستگی جابجایی (DDM) از زیرمجموعه‌های روش‌های المان مرزی استفاده شده است. ابتدا اثرات حرارتی بر یک مدل ترموالاستیک با وجود یک منبع حرارتی بررسی شد. مدلسازی‌های انجام شده نشان داد که مرزهای مدل هندسی در تحلیل‌های عددی حرارتی باید بسیار فراتر از مدلسازی صرفا مکانیکی باشد، چرا که اثرات حرارتی تا عمق زیادی از محل منبع حرارتی قابل پیگیری است. در ادامه مدلسازی شکست هیدرولیکی تحت اثرات دمایی نشان داد که استفاده از سرمایش مخزن می‌تواند در گسترش شکست هیدرولیکی بسیار مفید باشد. سرمایش سازند اطراف چاه موجب افزایش دهانه شکست ایجاد شده می شود که ارتباط مستقیم با هدایت‌پذیری شکستگی‌ها دارد و عاملی مهمی در موفقیت عملیات HF است. همچنین با استفاده از سرمایش محیطی، می‌توان با فشاری کمتر از فشار مورد نیاز برای غلبه بر فشار شکست به گسترش شکست هیدرولیکی پرداخت. این عامل نیز موجب کاهش هزینه‌های اجرایی برای تهیه پمپ‌های قوی و اعمال فشار کمتر بر تاسیسات درون چاهی و سر چاهی می‌شود.

کلیدواژه‌ها


[1] Q. Bai, Z. Liu, C. Zhang, F. Wang, Geometry nature of hydraulic fracture propagation from oriented perforations and implications for directional hydraulic fracturing, Comput. Geotech. 125 (2020). doi:10.1016/j.compgeo.2020.103682.
[2] N. Makedonska, S. Karra, H.S. Viswanathan, G.D. Guthrie, Role of interaction between hydraulic and natural fractures on production, J. Nat. Gas Sci. Eng. 82 (2020). doi:10.1016/j.jngse.2020.103451.
[3] S. Wang, D. Li, H. Mitri, H. Li, Numerical simulation of hydraulic fracture deflection influenced by slotted directional boreholes using XFEM with a modified rock fracture energy model, J. Pet. Sci. Eng. 193 (2020). doi:10.1016/j.petrol.2020.107375.
[4] C. Sun, H. Zheng, W. David Liu, H. Ma, Study on dynamic propagation of hydraulic fractures in enhanced thermal reservoir, Eng. Fract. Mech. 236 (2020). doi:10.1016/j.engfracmech.2020.107207.
[5] A. Abdollahipour, M. Fatehi Marji, A.R. Yarahmadi-Bafghi, A fracture mechanics concept of in-situ stress measurement by hydraulic fracturing test, in: 6th Int. Symp. In-Situ Rock Stress, ISRM, Japan, 2013.
[6] A. Abdollahipour, M. Fatehi Marji, A. Yarahmadi-Bafghi, J. Gholamnejad, A. Yarahmadi Bafghi, J. Gholamnejad, Simulating the propagation of hydraulic fractures from a circular wellbore using the Displacement Discontinuity Method, Int. J. Rock Mech. Min. Sci. 80 (2015) 281–291. doi:10.1016/j.ijrmms.2015.10.004.
[7] M. Fatehi-Marji, A. Abdollahipour, A. Yarhamadi-Bafghi, J. Gholamnejad, Analysis of geometrical parameters of hydraulic fracturing in horizontal oil wells stimulation, in: 2016.
[8] A. Abdollahipour, M. Fatehi-Marji, H. Soltanian, E.A. Kazemzadeh, M.F. Marji, H. Soltanian, E.A. Kazemzadeh, Behavior of a hydraulic fracture in permeable formations, J. Min. Environ. 9 (2018). doi:10.22044/jme.2018.6129.1428.
[9] A. Abdollahipour, M. Fatehi-Marji, M. Behnia, H. Soltanian, Using well tests in order to evaluate affecting parameters in hydraulic fracturing design, in: 2ndNational Conf. Pet. Geomech., National Iranian Oil Company, Tehran, Iran, 2017.
[10] M.Y. Wu, D.M. Zhang, W.S. Wang, M.H. Li, S.M. Liu, J. Lu, H. Gao, Numerical simulation of hydraulic fracturing based on two-dimensional surface fracture morphology reconstruction and combined finite-discrete element method, J. Nat. Gas Sci. Eng. 82 (2020). doi:10.1016/j.jngse.2020.103479.
[11] I. Tomac, M. Gutierrez, Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM, J. Rock Mech. Geotech. Eng. 9 (2017) 92–104. doi:10.1016/j.jrmge.2016.10.001.
[12] H. Slatlem Vik, S. Salimzadeh, H.M. Nick, Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions, Renew. Energy. 121 (2018) 606–622. doi:10.1016/j.renene.2018.01.039.
[13] A. Ghassemi, A. Nygren, A. Cheng, Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis, Geothermics. 37 (2008) 525–539. doi:10.1016/j.geothermics.2008.06.001.
[14] G. Stephens, B. Voight, Hydraulic fracturing theory for conditions of thermal stress, Int. J. Rock. Mech., Min. Sci. Geomech. 19 (1982) 279–284.
[15] W. Nowacki, Thermoelasticity, Pergamon Press, England, 1962.
[16] Y.X. Mukherjee, K. Shah, S. Mukherjee, Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations, Eng. Anal. Bound. Elem. 23 (1999) 89–96. http://www.sciencedirect.com/science/article/pii/S0955799798000642.
[17] Y. Wang, E. Papamichos, Conductive Heat Flow and Thermally Induced Fluid Flow around a Well Bore in a Poroelastic Medium, Water Resour. Res. 30 (1994) 3375–3384.
[18] B. Bai, One-dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition, Eng. Mech. 22 (2005) 186e91;(in Chinese).
[19] M.B. Dusseault, Stress changes in thermal operations, in: SPE Int. Therm. Oper. Symp., Society of Petroleum Engineers, Bakersfield, California, 1993: p. SPE-25809-MS.
[20] M. Lak, M. Fatehi Marji, A. Yarahmadi Bafghi, A. Abdollahipour, A coupled finite difference-boundary element method for modeling the propagation of explosion-induced radial cracks around a wellbore, J. Nat. Gas Sci. Eng. (2019) 41–51. doi:10.1016/j.jngse.2019.01.019.
[21] B. Carrier, S. Granet, Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech. 79 (2012) 312–328.
[22] R. Liu, Y. Jiang, B. Li, X. Wang, A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks, Comput. Geotech. 65 (2015) 45–55. doi:10.1016/j.compgeo.2014.11.004.
[23] A. Abdollahipour, M. Fatehi Marji, A. Yarahmadi Bafghi, J. Gholamnejad, A. Yarahmadi-Bafghi, J. Gholamnejad, No Title, 2016.
[24] H. Yousefian, H. Soltanian, M. Fatehi Marji, A. Abdollahipour, Y. Pourmazaheri, M.F. Marji, A. Abdollahipour, Y. Pourmazaheri, Numerical simulation of a wellbore stability in an Iranian oilfield utilizing core data, J. Pet. Sci. Eng. 168 (2018) 577–592.
[25] A. Abdollahipour, Crack propagation mechanism in hydraulic fracturing procedure in oil reservoirs, University of Yazd, 2015.
[26] A. Abdollahipour, M. Fatehi Marji, A. Yarahmadi Bafghi, J. Gholamnejad, A complete formulation of an indirect boundary element method for poroelastic rocks, Comput. Geotech. 74 (2016) 15–25. doi:10.1016/j.compgeo.2015.12.011.
[27] Y. Wang, M.B. Dusseault, A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability, J. Pet. Sci. Eng. 38 (2003) 187–198.
[28] J. Taylor, S. Bryant, Quantifying thermally driven fracture geometry during CO2 storage, in: Energy Procedia, Elsevier Ltd, 2014: pp. 3390–3404. doi:10.1016/j.egypro.2014.11.368.
[29] A. Abdollahipour, M. Fatehi-Marji, A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments, Renew. Energye. 153 (2020) 1488–1503.
[30] V. V Palciauskas, P.A. Domenico, Characterization of Drained and Undrained Response of Thermally Loaded Repository Rocks, Water Resour. Res. 18 (1982) 281–290.
[31] M.A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941) 155–164.
[32] D.F. McTigue, Thermoelastic Response of Fluid-saturated Porous Rock, J. Geophys. Res. 91 (1986) 9533–9542.
[33] O. Coussy, Thermoporoelastic response of a borehole, Transp. Porous Media. 21 (1991) 121–146.
[34] M. Kurashige, A thermoelastic theory of fluid-filled porous materials, Int. J. Solids Struct. 25 (1989) 1039–1052.
[35] Y. Ohnishi, A. Kobayashi, Thermal-hydraulic-mechanical coupling analysis of rock mass, in: J. Hudson (Ed.), Anal. Des. Methods, Pergamon Press, Oxford, England, 1993: pp. 191–208.
[36] P.T. Delaney, Rapid Intrusion of Magma into Wet Rock: Groundwater Flow Due to Pore Pressure Increases, J. Geophys. Res. 87 (1982) 7739–7756.
[37] P.C. Paris, F. Erdogan, A critical analysis of crack propagation laws, J. Basic Eng. 85 (1960) 528–534.
[38] A. Abdollahipour, M.F. Marji, M. Fatehi Marji, Analyses of Inclined Cracks Neighboring Two Iso-Path Cracks in Rock-Like Specimens Under Compression, Geotech. Geol. Eng. 35 (2017) 169–181. doi:10.1007/s10706-016-0095-6.
[39] A. Abdollahipour, H. Soltanian, Y. Pourmazaheri, E. Kazemzadeh, M. Fatehi-Marji, Sensitivity analysis of geomechanical parameters affecting a wellbore stability, J. Cent. South Univ. 26 (2019) 768–778. doi:10.1007/s11771-019-4046-2.