تحلیل تکنیک شکست انفجاری برای مخازن با نفوذپذیری بسیار پایین با استفاده از روش ترکیبی تحلیلی، ناپیوستگی جابجایی و تفاضل محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه یزد

2 دانشکده مهندسی معدن و متالورژی- دانشگاه یزد- یزد

3 استادیار، بخش استخراج، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، گروه نفت، ژئومکانیک نفت

چکیده

Crack propagation in the low permeable reservoir rock as an explosive fracturing technique can be used to increase the permeability and productivity of unconventional reservoirs. This technique is the same as hydraulic fracturing but uses blast-induced shock waves and gas pressure to generate and propagate radial cracks around the wellbore in a particular reservoir. In this study, we want to simulate the explosion-induced crack initiation and propagation around a wellbore as a stimulation method of unconventional reservoirs using an analytical-numerical technique. Therefore, the dynamic crack initiation and propagation process of deep rock caused by the explosion is considered both analytically and numerically. The mechanical process of rock cracking under the action of an explosion stress wave is theoretically analyzed and simulated with a finite difference method. Then the coupling effect of explosion load in the form of shock wave and gas pressure is established numerically based on the two-dimensional explicit finite difference and displacement discontinuity methods, respectively. The analytical method involved the solution of the Lame-Navier equation in elasto-dynamics based on the Green’s function solution. The simulation procedure consists of coupling the explicit finite difference method with the displacement discontinuity method in the form of higher-order displacement discontinuities along the boundaries of the problem. All of the mentioned processes have been done in an oil field with a density of 2.5 gr/cm3, Poisson’s ratio of 0.2, and elastic modulus of 20 GPa. The numerical results of this research show that shock waves are responsible for the initiation and propagation of radial cracks around the wellbore which in turn is filled with pressurized gas due to explosion. Then, these shock wave-induced radial cracks are propagating in the reservoir rock because of the explosive gas pressure inside them. This rock fracturing mechanism can help to improve the permeability and productivity of the highly low-permeable reservoirs in horizontal wells.

کلیدواژه‌ها


عنوان مقاله [English]

The explosive fracturing technique analysis for highly low permeable reservoirs using analytical, displacement discontinuity and finite difference coupled method

نویسندگان [English]

  • Mohammad Fatehi Marji 1
  • Meysam Lak 2
  • Manouchehr Sanei 3
1 Faculty of Mining and Metallurgical engineering, Yazd university, Yazd, Iran.
2 Faculty of Mining and Metallurgical engineering, Yazd university, Yazd, Iran
3 Assistant Professor, Mining and Metallurgy Engineering Department - Extraction, Petroleum Geomechanics
چکیده [English]

Crack propagation in the low permeable reservoir rock as an explosive fracturing technique can be used to increase the permeability and productivity of unconventional reservoirs. This technique is the same as hydraulic fracturing but uses blast-induced shock waves and gas pressure to generate and propagate radial cracks around the wellbore in a particular reservoir. In this study, we want to simulate the explosion-induced crack initiation and propagation around a wellbore as a stimulation method of unconventional reservoirs using an analytical-numerical technique. Therefore, the dynamic crack initiation and propagation process of deep rock caused by the explosion is considered both analytically and numerically. The mechanical process of rock cracking under the action of an explosion stress wave is theoretically analyzed and simulated with a finite difference method. Then the coupling effect of explosion load in the form of shock wave and gas pressure is established numerically based on the two-dimensional explicit finite difference and displacement discontinuity methods, respectively. The analytical method involved the solution of the Lame-Navier equation in elasto-dynamics based on the Green’s function solution. The simulation procedure consists of coupling the explicit finite difference method with the displacement discontinuity method in the form of higher-order displacement discontinuities along the boundaries of the problem. All of the mentioned processes have been done in an oil field with a density of 2.5 gr/cm3, Poisson’s ratio of 0.2, and elastic modulus of 20 GPa. The numerical results of this research show that shock waves are responsible for the initiation and propagation of radial cracks around the wellbore which in turn is filled with pressurized gas due to explosion. Then, these shock wave-induced radial cracks are propagating in the reservoir rock because of the explosive gas pressure inside them.

کلیدواژه‌ها [English]

  • Explosive rock fracturing
  • Unconventional reservoirs
  • Green’s function
  • Displacement discontinuity method
  • Finite difference method
  • Radial cracks
[1] Gandossi, L., others and European Commission. Joint Research Centre. Institute for Energy and Transport. (2013) An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Eur. Commisison Jt. Res. Cent. Tech. Reports, Publications Office 26347.
[2 ] Peng, X., Cheng, Y., Xinyun, L., Zhang, X. and Libao, S. H. I. (2013) Explosive fracturing simulation experiment for low permeability reservoirs and fractal characteristics of cracks produced. Pet. Explor. Dev., Elsevier 40, 682–686.
[3 ] Moridis, G. (2017) Literature review and analysis of waterless fracturing methods, California.
[4 ] Lak, M., Fatehi Marji, M., Yarahamdi Bafghi, A. and Abdollahipour, A. (2018) Discrete element modeling of explosion-induced fracture extension in jointed rock masses. J. Min. Environ., Shahrood University of Technology.
[5 ] Liu, Z., Peng, S., Zhao, H., Geng, Y. and Zhang, Z. (2019) Numerical simulation of pulsed fracture in reservoir by using discretized virtual internal bond. J. Pet. Sci. Eng., Elsevier 181, 106197.
[6 ] Brandon, C. W. (1962) Method of explosively fracturing a productive oil and gas formation, Google Patents.
[7 ] Dysart, G. R., Spencer, A. M. and Anderson, A. L. (1969) Blast-fracturing, American Petroleum Institute.
[8 ] Spencer, A. M., Dysart, G. R. and Anderson, A. L. (1970) New Blasting Methods Improve Oil Recovery. In SPE Practical Aspects of Improved Recovery Techniques Symposium, Society of Petroleum Engineers.
[9] Laspe, C. G. and Roberts, L. N. (1971) A Mathematical Analysis of Oil and Gas Well Stimulation by Explosive Fracturing. In SPE Rocky Mountain Regional Meeting, Society of Petroleum Engineers.
[10 ] Rogala, A., Krzysiek, J., Bernaciak, M. and Hupka, J. (2013) Non-aqueous fracturing technologies for shale gas recovery. Physicochem. Probl. Miner. Process. 49.
[11 ] Chen, Z., Yuan, Y., Yan, C., Wang, W. and Qin, Z. (2022) A Novel Carbon Dioxide Phase Transition Rock Breaking Technology: Theory and Application of Non-Explosive Blasting. Processes, MDPI 10, 2434.
[12 ] Agarwal, M. and Kudapa, V. K. (2022) Comparing the performance of supercritical CO2 fracking with high energy gas fracking in unconventional shale. MRS Energy Sustain., Springer 9, 461–468.
[13 ] Jiang, K., Deng, S., Jiang, X. and Li, H. (2023) Calculation of fracture number and length formed by methane deflagration fracturing technology. Int. J. Impact Eng., Elsevier 104701.
[14 ] Wang, J., Guo, T., Chen, M., Qu, Z., Liu, X. and Wang, X. (2023) Numerical simulation of deflagration fracturing in shale gas reservoirs considering the effect of stress wave impact and gas drive. Int. J. Rock Mech. Min. Sci., Elsevier 170, 105478.
[15 ] Zhu, X., Feng, C. and Cheng, P. (2023) Improving reservoir permeability by electric pulse controllable shock wave. J. Pet. Explor. Prod. Technol., Springer 13, 1655–1667.
[16 ] Goodarzi, M., Mohammadi, S. and Jafari, A. (2015) Numerical analysis of rock fracturing by gas pressure using the extended finite element method. Pet. Sci., China University of Petroleum (Beijing) 12, 304–315.
[17 ] Guo, B., Shan, J. and Feng, Y. (2014) Productivity of blast-fractured wells in liquid-rich shale gas formations. J. Nat. Gas Sci. Eng., Elsevier 18, 360–367.
[18 ] Shan, J. (2014) A Theoretical Investigation of Radial Lateral Wells with Shockwave Completion in Shale Gas Reservoirs. ProQuest Diss. Theses; Thesis (M.S.)--University Louisiana Lafayette, 2014.; Publ. Number AAT 1585873; ISBN 9781321655957; Source Masters Abstr. Int. Vol. 54-04.; 74 p.
[19 ] Sheng, G., Su, Y., Wang, W., Zhang, Q. and Liu, J. (2015) Flow Behavior Analysis and Application of Complex-flow Model in Explosive Fracturing Well Using Fractal Theory. In SPE Middle East Oil & Gas Show and Conference, Society of Petroleum Engineers.
[20 ] Settgast, R. R., Vorobiev, O. Y., Morris, J. P., Herbold, E. B., Homel, M. A. and Annavarapu, C. (2017) Modeling of fracture opening by explosive products. In 51st US Rock Mechanics / Geomechanics Symposium 2017, American Rock Mechanics Association.
[21 ] Shang, X., Zhang, Z., Yang, W., Wang, J. G. and Zhai, C. (2022) Fractal Analysis for Wave Propagation in Combustion--Explosion Fracturing Shale Reservoir. Fractal Fract., MDPI 6, 632.
[22 ]        Gong, D., Chen, J., Wang, W., Qu, G., Zhu, J., Wang, X. and Zhang, H. (2022) Numerical simulations of radial well assisted deflagration fracturing based on the smoothed particle hydrodynamics method. Processes, MDPI 10, 2535.
[23 ] Abdollahipour, A., Marji, M. F., Bafghi, A. Y. and Gholamnejad, J. (2016) Time-dependent crack propagation in a poroelastic medium using a fully coupled hydromechanical displacement discontinuity method. Int. J. Fract., Springer 199, 71–87.
[24 ]  Haeri, H., Marji, M. F. and Shahriar, K. (2015) Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM. Arab. J. Geosci., Springer Berlin Heidelberg 8, 3915–3927.
[25] Marji, M. F. (2015) Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method. J. Cent. South Univ., Central South University 22, 1045–1054.
[26 ] Hosseini_Nasab, H. and Fatehi Marji, M. (2007) A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting. J. Mech. Mater. Struct., Mathematical Sciences Publishers 2, 439–458.
[27 ] Haeri, H. (2015) Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM. Comput. Concr. An Int. J. 16, 881–896.
[28 ] Haeri, H., Shahriar, K., Marji, M. F. and Moarefvand, P. (2014) On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression. Strength Mater., Springer 46, 140–152.
[29 ] Rossmanith, H. P. (Ed.). (1983) Rock Fracture Mechanics, Springer Vienna, Vienna.
[30 ] Whittaker, B. N., Singh, R. N. and Sun, G. (1992) Rock fracture mechanics principles, design and applications, developments in geotechnical engineering. Netherlands Elsevier Publ.
[31 ] Marji, M. F. (2014) Rock Fracture Mechanics with Displacement Discontinuity Method: Numerical Rock Fracture Mechanics, Higher Order Displacement Discontinuity Method, Crack Initiation and Propagation, LAP LAMBERT Academic Publishing.
[32 ] Dehghan Banadaki, M. M. and Mohanty, B. (2012) Numerical simulation of stress wave induced fractures in rock. Int. J. Impact Eng., Pergamon 4041, 16–25.
[33 ] Lak, M., Marji, M. F., Bafghi, A. Y. and Abdollahipour, A. (2019) Analytical and numerical modeling of rock blasting operations using a two-dimensional elasto-dynamic Green’s function. Int. J. Rock Mech. Min. Sci., Elsevier 114, 208–217.
[34 ] Omidi Manesh, M., Sarfarazi, V., Babanouri, N. and Rezaei, A. (2023) Investigation of External Work, Fracture Energy, and Fracture Toughness of Oil Well Cement Sheath using HCCD Test and CSTBD Test. J. Min. Environ., Shahrood University of Technology 14, 619–634.
[35 ] Bendezu, M., Romanel, C. and Roehl, D. (2017) Finite element analysis of blast-induced fracture propagation in hard rocks. Comput. Struct., Pergamon 182, 1–13.
[36 ] Abdollahipour, A., Fatehi Marji, M., Yarahmadi Bafghi, A. and Gholamnejad, J. (2015) Simulating the propagation of hydraulic fractures from a circular wellbore using the Displacement Discontinuity Method. Int. J. Rock Mech. Min. Sci., Pergamon 80, 281–291.
[37 ] Abdollahipour, A., Fatehi Marji, M., Yarahmadi-Bafghi, A. and Gholamnejad, J. (2016) Numerical investigation on the effect of crack geometrical parameters in hydraulic fracturing process of hydrocarbon reservoirs. J. Min. Environ., Shahrood University of Technology 7, 205–214.
[38 ] Abdollahipour, A., Fatehi Marji, M., Yarahmadi Bafghi, A. and Gholamnejad, J. (2016) DEM simulation of confining pressure effects on crack opening displacement in hydraulic fracturing. Int. J. Min. Sci. Technol., Elsevier 26, 557–561.
[39 ] Behnia, M., Goshtasbi, K., Marji, M. F. and Golshani, A. (2014) Numerical simulation of crack propagation in layered formations. Arab. J. Geosci., Springer Berlin Heidelberg 7, 2729–2737.
[40 ] Lak, M., Fatehi Marji, M., Yarahamdi Bafghi, A. R. and Abdollahipour, A. (2019) Discrete element modeling of explosion-induced fracture extension in jointed rock masses. J. Min. Environ., Shahrood University of Technology 10, 125–138.
[41 ] Hajibagherpour, A. R., Mansouri, H. and Bahaaddini, M. (2020) Numerical modeling of the fractured zones around a blasthole. Comput. Geotech., Elsevier 123, 103535.
[42 ] Tao, J., Yang, X.-G., Li, H.-T., Zhou, J.-W., Fan, G. and Lu, G.-D. (2020) Effects of in-situ stresses on dynamic rock responses under blast loading. Mech. Mater., Elsevier 145, 103374.
[43 ] Xie, L. X., Zhang, Q. B., Gu, J. C., Lu, W. B., Yang, S. Q., Jing, H. W. and Wang, Z. L. (2019) Damage evolution mechanism in production blasting excavation under different stress fields. Simul. Model. Pract. Theory, Elsevier 97, 101969.
[44 ] Hao, X., Du, W., Zhao, Y., Sun, Z., Zhang, Q., Wang, S. and Qiao, H. (2020) Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading. Int. J. Min. Sci. Technol., Elsevier 30, 659–668.
[45 ] Yang, L., Yang, A., Chen, S., Fang, S., Huang, C. and Xie, H. (2021) Model experimental study on the effects of in situ stresses on pre-splitting blasting damage and strain development. Int. J. Rock Mech. Min. Sci., Elsevier 138, 104587.
[46 ] Yang, R., Ding, C., Li, Y., Yang, L. and Zhao, Y. (2019) Crack propagation behavior in slit charge blasting under high static stress conditions. Int. J. Rock Mech. Min. Sci., Elsevier 119, 117–123.
[47 ] Lak, M., Fatehi Marji, M. and Yarahmadi Bafghi, A. (2018) A finite difference modelling of crack initiation in rock blasting. In The 2018 World Congress on Advances in Civil, Environmental, & Materials Research (ACEM18), Songdo Convensia, Incheon, Korea.
[48 ] Changyou, L., Jingxuan, Y. and Bin, Y. (2017) Rock-breaking mechanism and experimental analysis of confined blasting of borehole surrounding rock. Int. J. Min. Sci. Technol., Elsevier 27, 795–801.
[49 ] Lak, M., Fatehi Marji, M., Yarahmadi Bafghi, A., Abdollahipour, A. and Pourghasemi Sagand, M. (2023) Analytical solution of the explosion-induced wave propagation in rock using elastodynamic theory. J. Anal. Numer. Methods Min. Eng., Yazd University 13, 57–65.
[50 ] Sadd, M. H. (2009) Elasticity: theory, applications, and numerics, Academic Press.
[51 ] Sanei, M., Duran, O., Devloo, P. R. B. and Santos, E. S. R. (2020) An innovative procedure to improve integration algorithm for modified Cam-Clay plasticity model. Comput. Geotech., Elsevier 124, 103604.
[52 ] Sanei, M., Devloo, P. R. B., Forti, T. L. D., Durán, O. and Santos, E. S. R. (2022) An innovative scheme to make an initial guess for iterative optimization methods to calibrate material parameters of strain-hardening elastoplastic models. Rock Mech. Rock Eng., Springer 1–23.
[53 ] Duran, O., Sanei, M., Devloo, P. R. B. and Santos, E. S. R. (2020) An enhanced sequential fully implicit scheme for reservoir geomechanics. Comput. Geosci., Springer 24, 1557–1587.
[54 ] Sanei, M., Duran, O., Devloo, P. R. B. and Santos, E. S. R. (2021) Analysis of pore collapse and shear-enhanced compaction in hydrocarbon reservoirs using coupled poro-elastoplasticity and permeability. Arab. J. Geosci., Springer 14, 1–18.
[55 ] Sanei, M., Duran, O., Devloo, P. R. B. and Santos, E. S. R. (2022) Evaluation of the impact of strain-dependent permeability on reservoir productivity using iterative coupled reservoir geomechanical modeling. Geomech. Geophys. Geo-Energy Geo-Resources, Springer 8, 54.
[56 ] Trivino, L. F. and Mohanty, B. (2015) Assessment of crack initiation and propagation in rock from explosion-induced stress waves and gas expansion by cross-hole seismometry and FEM–DEM method. Int. J. Rock Mech. Min. Sci., Elsevier 77, 287–299.
[57 ] Wilmott, P., Howison, S. and Dewynne, J. (1995) The mathematics of financial derivatives: a student introduction, Cambridge university press.
[58 ] Chaudhry, M. H. (2008) Open-channel flow: Second Edition. Open-Channel Flow Second Ed., Springer US 1–523.
[59 ] Crouch, S. L. (1976) Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int. J. Numer. Methods Eng., Wiley-Blackwell 10, 301–343.
[60 ] Crouch, S. L., Starfield, A. M. and Rizzo, F. J. (1983) Boundary Element Methods in Solid Mechanics. J. Appl. Mech. 50, 704.
[61 ] Shou, K. J. and Crouch, S. L. (1995) A higher order displacement discontinuity method for analysis of crack problems. Int. J. Rock Mech. Min. Sci., Pergamon 32, 49–55.
[62 ] Marji, M. F., Hosseini-Nasab, H. and Kohsary, A. H. (2006) On the uses of special crack tip elements in numerical rock fracture mechanics. Int. J. Solids Struct., Pergamon 43, 1669–1692.
[63] Marji, M. F. (2013) On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method. Eng. Fract. Mech., Pergamon 98, 365–382.
[64] Manual, F. U. (2016) Version 8.0, Itasca Consulting Group. Inc., Minneapolis, Minn.
[65 ] Lysmer, J. and Kuhlemeyer, R. L. (1969) Finite dynamic model for infinite media. J. Eng. Mech. Div., ASCE 95, 859–878.
[66 ] Lak, M., Baghbanan, A. and Hashemolhoseini, H. (2017) Effect of seismic waves on the hydro-mechanical properties of fractured rock masses. Earthq. Eng. Eng. Vib. 16, 525–536.
[67 ] Yousefian, H., Soltanian, H., Marji, M. F., Abdollahipour, A. and Pourmazaheri, Y. (2018) Numerical simulation of a wellbore stability in an Iranian oilfield utilizing core data. J. Pet. Sci. Eng., Elsevier 168, 577–592.
[68 ] Lak, M., Fatehi Marji, M., Yarahamdi Bafghi, A. and Abdollahipour, A. (2018, July) Numerical Modelling of Crack Initiation around a Wellbore Due to Explosion. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng.
[69 ]        Bhandari, S. (1997) Engineering Rock Blasting Operations, Taylor & Francis.
[70] Jimeno, E. L., Jimino, C. L. and Carcedo, A. (1995) Drilling and Blasting of Rocks, Taylor & Francis.
[71 ] Cho, S. H. and Kaneko, K. (2004) Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int. J. Rock Mech. Min. Sci., Elsevier 41, 771–784.
[72 ] Chun-rui, L., Li-jun, K., Qing-xing, Q., De-bing, M., Quan-ming, L. and Gang, X. (2009) The numerical analysis of borehole blasting and application in coal mine roof-weaken. Procedia Earth Planet. Sci., Elsevier 1, 451–459.
[73 ] Duvall, W. (1953) STRAIN‐WAVE SHAPES IN ROCK NEAR EXPLOSIONS. GEOPHYSICS, Society of Exploration Geophysicists 18, 310–323.
[74 ] Sharpe, J. A. (1942) THE PRODUCTION OF ELASTIC WAVES BY EXPLOSION PRESSURES. I. THEORY AND EMPIRICAL FIELD OBSERVATIONS. GEOPHYSICS, Society of Exploration Geophysicists 7, 144–154.
[75] Gokhale, B. V. (2011) Rotary Drilling and Blasting in Large Surface Mines. CRC Press, CRC Press.
[76 ] Moradi, A., Tokhmechi, B., Rasouli, V. and Fatehi Marji, M. (2017) A comprehensive numerical study of hydraulic fracturing process and its affecting parameters. Geotech. Geol. Eng., Springer 35, 1035–1050.
[77] Abdollahipour, A. and Marji, M. F. (2020) A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments. Renew. Energy, Elsevier 153, 1488–1503.
[78] Wapenaar, K. (2017) A single-sided representation for the homogeneous Green’s function of a unified scalar wave equation. J. Acoust. Soc. Am., Acoustical Society of America 141, 4466–4479.