تعیین پنجره ایمن وزن گل و مسیر بهینه حفاری سازند گدوان با استفاده از معیارهای شکست سنگ در یکی از میادین هیدروکربنی جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد زمین شناسی نفت، دانشگاه خوارزمی تهران

2 دانشیار، دانشکده علوم زمین، دانشگاه خوارزمی تهران، ایران

3 استادیار، گروه زمین شناسی نفت، مرکز اکتشاف و تولید، پژوهشکده صنعت نفت (RIPI)

4 دانشیار، دانشکده مهندسی معدن، دانشکدگان فنی، دانشگاه تهران

5 مربی، گروه زمین شناسی نفت، مرکز اکتشاف و تولید، پژوهشکده صنعت نفت (RIPI)،

چکیده

امروزه اقتصاد کشورهای حوزه خاورمیانه در گرو افزایش نرخ بهره‌برداری و تولید نفت خام می‌باشد. با درک این واقعیت که کشف میادین هیدروکربوری عظیم در آینده به ندرت رخ خواهد داد، از این رو برنامه‌ریزی شرکت‌های نفتی، تولید بهینه از میادین موجود می‌باشد. سازند گدوان یکی از مخازن مهم دشت آبادان محسوب می‌شود که از توالی‌های شیل و ماسه‌سنگ تشکیل شده‌است. حفر چاه‌های تولیدی در این سازند به دلیل ماهیت ضعیف توالی شیلی همواره یک چالش بوده است. بیش از ۹۰% مشکلات چاه در سازند گدوان ناشی از ناپایداری چاه است. از جمله این مشکلات می‌توان به ریزش چاه، تنگ‌شدگی و گیرکردن مته اشاره نمود که منجر به افزایش زمان غیرمولد (‏NPT) و هزینه‌های حفاری می‌شوند. هدف اصلی این پژوهش، ارزیابی پایداری چاهی واقع در یکی میادین جنوب‌غرب ایران بر اساس یک مدل ژئومکانیکی یک‌بعدی با استفاده از نگارهای چاه‌پیمایی می‌باشد. پس از ساخت مدل ژئومکانیکی یک‌بعدی، جهت ارزیابی پایداری چاه از معیارهای شکست موهر-کولمب و موگی-کولمب استفاده شد. با بررسی نتایج مشخص شد که معیار شکست موهر-کولمب، تخمین بهتری در مورد فشار ریزش ارائه می‌دهد. همچنین امتداد ریزش‌های شناسایی شده بر روی نگار تصویری، به صورت شمال‌غرب-جنوب‌شرق بوده، که نماینگر جهت تنش‌افقی حداقل می‌باشد. برطبق نتایج آنالیز حساسیت، جهت بهینه حفاری برای سازند گدوان، شمال‌غرب-جنوب‌شرق بوده و برای انجام حفاری قائم در این سازند مطابق با مدل ژئومکانیکی چاه مورد مطالعه، وزن گل ایمن برابر با LB/G 14/9 تخمین زده شد. نتایج حاصل از این مطالعه می‌تواند به عنوان یک مرجع برای تعیین پنجره وزن گل بهینه در برنامه‌ریزی چاه‌های آتی در این میدان برای مقابله با مشکلات پایداری حفاری استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of safe mud weight window and optimal drilling path in the Gadwan formation using rock failure criteria in one of the hydrocarbon fields in southwest Iran

نویسندگان [English]

  • Hossein jahan mohammadi 1
  • Hossein Mosaddeg 2
  • Mehran Azizzadeh 3
  • Hamid sarkheil 4
  • Mohammad mohammadnia 5
1 Master's degree in Petroleum Geology, Kharazmi University, Tehran
2 Associate Professor, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
3 Assistant Professor, Petroleum Geology Dept., Center for Exploration & Production, Research Institute of Petroleum Industry (RIPI),
4 Associate Professor, School of Mining, College of Engineering, University of Tehran, Iran
5 Petroleum Geology Dept., Center for Exploration & Production, Research Institute of Petroleum Industry (RIPI),
چکیده [English]

Today, the economies of Middle Eastern countries rely heavily on increasing their crude oil production and exploitation rates. With the understanding that the discovery of large hydrocarbon fields will become increasingly rare in the future, oil companies' planning focuses on optimal production from existing fields. The Gadwan formation is one of the important reservoirs in the Abadan Plain, composed of shale and sandstone sequences. Drilling production wells in this formation has always been a challenge due to the weak nature of the shale sequence. More than 90% of the well problems in the Gadwan formation are due to wellbore instability, including collapse, narrowing, and sticking of the drill bit, resulting in increased non-productive time (NPT) and drilling costs. The main objective of this study is to evaluate the stability of a well located in southwestern Iranian oilfields using a one-dimensional geomechanical model based on well log data. After constructing a one-dimensional geomechanical model, the Mohr-Coulomb and Mogi-Coulomb criteria were used to evaluate wellbore stability. The results showed that the Mohr-Coulomb criterion provides a better estimate of collapse pressure. Furthermore, the orientation of the identified collapses on the image log was northwest-southeast, indicating the direction of minimum horizontal stress. According to the sensitivity analysis results, the optimal drilling direction for the Gadwan formation is northwest-southeast, and for vertical drilling in this formation, the safe mud weight estimated according to the well's geomechanical model is 14.9 pounds per gallon (LB/G). The results of this study can be used as a reference for determining the optimal mud weight window in planning future wells in this field to deal with drilling stability problems.

کلیدواژه‌ها [English]

  • Geomechanical model
  • wellbore instability
  • Gadwan Formation
  • Abadan plain
  • optimal drilling path
[1] Peng S, Zhang J (2007), Engineering geology for underground rocks. New York, Springer.
[2] Abbas, A.K., Al-Asadi, Y.M., Alsaba, M., Flori, R.E., & Alhussainy, S. (2018), Development of a geomechanical model for drilling deviated wells through the Zubair formation in Southern Iraq. In the SPE/IADC Middle East Drilling Technology Conference and Exhibition, (pp. 1-15). Abu Dhabi, UAE.
[3] Chen, X., Gao, D., Yang, J., Luo, M., Feng, Y., & Li, X. (2018), A comprehensive wellbore stability model considering poroelastic and thermal effects for inclined wellbores in deepwater drilling. Journal of Energy Resources Technology, 140(9). pp. 1-10.
[4] Bourgoyne, A.T., Millheim, K.K., Chenevert, M.E., & Young, F.S. (1986), Applied drilling engineering, Vol. 2, Society of Petroleum Engineers.
[5] Ganguli, S. S., & Sen, S. (2020). Investigation of present-day in-situ stresses and pore pressure in the south Cambay Basin, western India: Implications for drilling, reservoir development and fault reactivation. Marine and Petroleum Geology, 118, p. 104422.
[6] Guerra, C., Fischer, K. and Henk, A., (2019). Stress prediction using 1D and 3D geomechanical models of a tight gas reservoir—A case study from the Lower Magdalena Valley Basin, Colombia. Geomechanics for Energy and the Environment, 19, p.100113.
[7] Rajabi, M., Tingay, M. and Heidbach, O., (2016). The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production. Marine and Petroleum Geology, 77, pp.776-790.
[8] Bradley, W.B., (1979), Mathematical concept-stress cloud can predict borehole failure. Oil Gas J, 77(8), pp. 92-102.
[9] Azim, S.A., Mukherjee, P., Al-Anezi, S.A., Al-Otaibi, B., Al-Saad, B., Perumalla, S., & Babbington, J.F. (2011), Using Integrated Geomechanical Study to Resolve Expensive Wellbore Instability Problems While Drilling Through Zubair Shale/Sand Sequence of Kuwait: A Case Study. In SPE/IADC Middle East Drilling Technology Conference and Exhibition, Muscat, Oman. pp. 1-14.
[10] Kolawole, O., Federer-Kovács, G., & Szabó, I. (2018), Formation susceptibility to wellbore instability and sand production in the Pannonian Basin, Hungary. In 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington, pp. 1-12.
[11] ملکی، ش.، مرادزاده، ع.، قوامی ربایی، ر.، صادق زاده، ف.، (1393). استفاده از نگارها جهت تعیین تنش‌های برجا روی دیواره‌ی چاه‌های نفتی؛ مطالعه ی موردی یکی از میادین نفتی جنوب ایران، ماهنامه علمی اکتشاف و تولید نفت و گاز، شماره 116، صص60-63.
[12] Mansourizadeh, M., Jamshidian, M., Bazargan, P., & Mohammadzadeh, O., (2016), Wellbore stability analysis and breakout pressure prediction in vertical and deviated boreholes using failure criteria – A case study. Journal of Petroleum Science and Engineering, 145, pp. 482-492
[13] Ghorbani, M., (2019), Lithostratigraphy of Iran. Springer International Publishing, Cham, Switzerland.
[14] AbdollahieFard, I., Alavi, S.A., and Mokhtari, M., (2006), Structural framework of the Abadan Plain (SW Iran) and the North Persian Gulf based on the geophysical data, Iranian International Journal of Science, 32, pp. 107-120
 [15]مطهری، م و هاشمی، ع و ملقب، ع، (1398). ساخت مدل ژئومکانیکی برای یک عدد چاه در میدان جنوب غربی ایران، سومین کنفرانس ملی مهندسی مواد، متالورژی و معدن ایران، اهواز. صص 1-10.
[16] Kadkhodaie, A. (2021), The impact of geomechanical units (GMUs) classification on reducing the uncertainty of wellbore stability analysis and safe mud window design. Journal of Natural Gas Science and Engineering, Vol. 91, pp. 1-14.
[17] Holt, R.M., Fjær, E., Bauer, A., (2013), Static and Dynamic Moduli – so equal, and yet so different, 47th US Rock Mechanics / Geomechanics Symposium, San Francisco, USA, pp. 1-10.
[18] Herwanger, J., Koutsabeloulis, N.C., (2011), Seismic Geomechanics - How to build and calibrate geomechanical models using 3D and 4D seismic data, 1ed. EAGE Publications b.v. Houten.
[19] Peng, S., Wang, X., Xiao, J., Wang, L., & Du, M. (2001), Seismic detection of rock mass damage and failure zone in tunnel. J China Univ Min Tech, 30(1), pp. 23-26.
[20] Zoback, M.D., (2010), Reservoir geomechanics. Cambridge University Press. New York.
[21] Detournay, E., & Cheng, A.D. (1988), Poroelastic response of a borehole in a non-hydrostatic stress field. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 25, pp. 171-182
[22] Zhang, J., (2011), Pore pressure prediction from well logs: Methods, modifications, and new approaches. In Earth-Science Reviews, 108(1-2), pp. 50-63.
[23] Aadnoy, B., & Looyeh, R. (2019), Petroleum rock mechanics: drilling operations and well design. 2nd Edition, Gulf Professional Publishing.
[24] Yamamoto, K. (2003), Implementation of the extended leak-off test in deep wells in Japan. In Rock stress, pp. 579-584.
[25] Barton, C.A., Zoback, M.D., Lovell, M., & Parkinson, N. (2002), Wellbore imaging technologies applied to reservoir geomechanics and environmental engineering. Geological applications of well logs: AAPG Methods in Exploration, Vol. 13, pp. 229-239.
[26] Soroush, H., Ginty, W., Pan, C., Ferguson, W., Bere, A., Farid, S.M.U., & Hussain, Z. (2018), Geomechanics-based hydraulic fracturing modelling for tight gas carbonates: case study of naushahro feroz field in pakistan. In 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington, pp. 1-17.
[27] Anderson, E.M., (1951) The dynamics of faulting and dyke formation, with applications to Britain, 2 ed. Oliver and Boyd, Edinburgh,
[28] Al-Ajmi, A.M. and Zimmerman, R.W. (2006), Stability Analysis of Vertical Boreholes using the Mogi-Coulomb Failure Criterion, International Journal of Rock Mechanics and Mining Sciences 43 (8), pp. 1200-1211.
[29] Ameen, M.S., Smart, B.G., Somerville, J.M., Hammilton, S., & Naji, N.A. (2009), Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 26(4), pp. 430-444.
[30] Wang, Z. (2000), Dynamic versus static elastic properties of reservoir rocks. Seismic and acoustic velocities in reservoir rocks, Vol. 3, pp. 531-539.
[31] Eissa, E.A., Kazi, A., (1988), Relation between static and dynamic Young's moduli of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 25, pp. 479-482.
[32] Lacy, L.L. (1996). Dynamic rock mechanics testing for optimized fracture designs. In SPE annual technical conference and exhibition, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, pp. 1-13.
[33] Freyburg, E., (1972), Der Untere und mittlere Buntsandstein SW-Thuringen in seinen gesteinstechnischen Eigenschaften. Ber. Dtsch. Ges. Geol. Wiss., A, Berlin, Vol. 176, pp. 911-919.
[34] Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.R. and Risnes, R., (1992) Petroleum Related Rock Mechanics, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1st edition, 338p.
[35] Moos, D., Zoback, M.D., & Bailey, L. (2001), Feasibility study of the stability of openhole multilaterals, Cook Inlet, Alaska. SPE Drilling & Completion, 16(03), pp. 140-145.
[36] Chang, C. D., M. D. Zoback, and A. Khaksar. (2006), Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51, no. 3-4, pp.223-237.
[37] Hareland, G., & Nygaard, R. (2007). Calculating unconfined rock strength from drilling data. In ARMA Canada-US Rock Mechanics Symposium (pp. 1-15).
[38] Lal, M. (1999), Shale stability: drilling fluid interaction and shale strength. In SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, pp. 1-10.
[39] Horsrud, P. (2001), Estimating mechanical properties of shale from empirical correlations. SPE Drilling & Completion, 16(02), pp. 68-73.
[40] Golubev, A. A., & Rabinovich, G. Y. (1976). Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. Prikl. Geofiz. Moskva, 73, 109-116.
[41] Asef, M. R., & Farrokhrouz, M. (2010, April). Empirical Approach for Evaluation of Compressive Strength of Shale. In Second EAGE Workshop on Shales (pp. cp-158). European Association of Geoscientists & Engineers.