انتخاب وزن سیال حفاری بر مبنای معیارهای مکانیک سنگ: مطالعه موردی در یکی از میادین جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی سهند، تبریز، ایران

چکیده

از مهم‌ترین وظایف سیال حفاری، حفظ و فراهم‌کردن پایداری دیواره چاه می‌باشد. فشار کم در داخل چاه می‌تواند منجر به ریزش دیواره و یا ورود ناخواسته سیال به درون چاه گردد. از طرفی فشار بالای داخل چاه می‌تواند منجر به شکست دیواره چاه گردد؛ بنابراین مقدار مناسب چگالی سیال حفاری باید به‌گونه‌ای انتخاب شود که فشار داخل چاه در حد تعادل باقی بماند. هدف این پژوهش تعیین مقدار چگالی سیال حفاری با توجه به مفهوم پایداری دیواره چاه است به‌گونه‌ای که تنش‌های شعاعی و مماسی در دیواره چاه برابر گردند. بدین منظور ابتدا داده‌های موردنیاز از یکی از چاه‌های میدانی در جنوب غربی ایران جمع‌آوری شدند. سپس با استفاده از روابط موجود تنش‌های القائی در دیواره چاه محاسبه گردیدند. نتایج این مطالعه نشان داد که با توجه به پنجره ایمن چگالی سیال حفاری، مقدار بیشترین و کمترین چگالی بهینه سیال که در آن پایداری دیواره چاه در عمق‌های مورد نظر حفظ خواهد شد به ترتیب 16/80 و 13/93 پوند بر گالن خواهد بود. همچنین مقایسه چگالی بهینه و چگالی واقعی مورد استفاده در سیال حفاری این چاه نشان داد که به دلیل پایین‌تر بودن چگالی واقعی استفاده شده در عملیات نسبت به چگالی بهینه، در اعماق مختلف مشکلات عدم پایداری دیواره چاه مشاهده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Selection of drilling fluid weight based on rock mechanics criteria: a case study in one of the south-west Iranian field

نویسندگان [English]

  • Reza Jalakani
  • Seyyed Shahab Tabatabaee Moradi
Sahand University of Technology, Tabriz, Iran
چکیده [English]

One of the most important tasks of the drilling fluid is to maintain and provide the stability of the well. Low pressure inside the well can lead to the collapse of the wall or the unwanted entry of fluid into the well. On the other hand, the high pressure inside the well can lead to the failure of the well wall; Therefore, the appropriate value of drilling fluid density should be selected so that the pressure inside the well remains at equilibrium. The Objectives of this research is to determine the density of drilling fluid according to the concept of wellbore stability so that the radial and tangential stresses in the well wall are equal. For this purpose, first the required data were collected from one of the field wells in the southwest of Iran. Then, the induced stresses in the well wall were calculated using the existing relations. The results of this study showed that according to the safe window of drilling fluid density, the maximum and minimum optimal fluid density in which the stability of the well will be maintained at the desired depths will be 16.80 and 13.93 pounds per gallon, respectively. Also, the comparison of the optimal density and the actual density used in the drilling fluid of this well showed that due to the fact that the actual density used in the operation was lower than the optimal density, problems of instability of the well wall were observed at different depths.

کلیدواژه‌ها [English]

  • Drilling fluid density
  • Well stability
  • Fluid density window
  • Elastic coefficients
  • Induced stresses
[1] Marshall, W., H., Brandt, L., K. (1978). Solids control in a drilling fluid. Proceedings - SPE International Symposium on Formation Damage Control. SPE 7011, 109-112 https://doi.org/10.2118/7011-MS
[2] Darley, H.C.H., George R., Gra. (1907-1983). Composition and properties of drilling fluids and completion fluids: Fifth Edition. Butterworth-Heinemann. TN871.2. G695 1988 622-338 87-31536,0-87201-147-X
[3] Gholilou, A., Behnoud far, P., Vialle, S., Madadi, M. (2017). Determination of safe mud window considering time-dependent variations of temperature and pore pressure: Analytical and numerical approaches, Journal of Rock Mechanics and Geotechnical Engineering. 9,5,900-911. https://doi.org/10.1016/j.jrmge.2017.02.002
[4] Gholami, R., Moradzadeh, A., Rasouli, V., Hanachi, J. (2014). Practical application of failure criteria in determining safe mud weight windows in drilling operations. Journal of Rock Mechanics and Geotechnical Engineering. 6, 1, 13-25. http://dx.doi.org/10.1016/j.jrmge.2013.11.002.
[5] McLean, M. R., Addis, M. A. (1990). Wellbore stability. The effect of strength criteria on mud weight recommendations, Proceedings - SPE Annual Technical Conference and Exhibition, SPE 20405, 9-17. https://doi.org/10.2118/20405-MS
[6] Liz-Losada, Ramiro J., Alejano, Leandro R. (2000). New Safe Mud Weight Window Representations to Prevent Wellbore Instability, Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, APDT, ADC/SPE 62800, 493-504. https://doi.org/10.2118/62800-MS
[7] Chen, X., Tan, C. P., Haberfield, C. M. (2000). Case studies on application of novel guideline charts in planning well trajectory and mud weight program, Society of Petroleum Engineers - International Oil and Gas Conference and Exhibition in China 2000, IOGCEC 2000, SPE 64737. https://doi.org/10.2118/64737-MS
[8] Mohiuddin, M. A., Khan, K., Abdulraheem, A., Al-Majed, A., Aurifullah, V. (2005). Field based criteria for the design of safe mud weight window, society of Petroleum Engineers - SPE Technical Symposium of Saudi Arabia Section 2005, TSSA 2005, SPE 106327, 1-6. https://doi.org/10.2118/106327-MS
[9] Maleki, Sh., Gholami, R., Rasouli, V., Moradzadeh, A., Riabi, R., Ghavami, Sadaghzadeh, Farhad. (2014). Comparison of different failure criteria in prediction of safe mud weigh window in drilling practice, Earth-Science Reviews, 136, 36-58. https://doi.org/10.1016/j.earscirev.2014.05.010
[10] Das, B., Chatterjee, R. (2017). Wellbore stability analysis and prediction of minimum mud weight for few wells in Krishna-Godavari Basin, India, International Journal of Rock Mechanics and Mining Sciences. 93, 30-37. https://doi.org/10.1016/j.ijrmms.2016.12.018
[11] Darvishpour, A., Cheraghi Seifabad, M., Wood                               David, A. (2019). Wellbore stability analysis to determine the safe mud weight window for sandstone layers. Petroleum Exploration and Development. 46, 5, 1031-1038. https://doi.org/10.1016/S1876-3804(19)60260-0
[12] Rafieepour, S., Zamiran, S., Ostadhassan, Mehdi. (2020). A cost-effective chemo-thermo-poroelastic wellbore stability model for mud weight design during drilling through shale formations. Journal of Rock Mechanics and Geotechnical Engineering, 12, 768-779.https://doi.org/10.1016/j.jrmge.2019.12.008
[13] Kadkhodaie, A. (2021). The impact of geomechanical units (GMUs) classification on reducing the uncertainty of wellbore stability analysis and safe mud window design, Journal of Natural Gas Science and Engineering, 91, 103964,https://doi.org/10.1016/j.jngse.2021.103964.
[14] Hoseinpour, M., Riahi, M.A. (2022). Determination of the mud weight window, optimum drilling trajectory, and wellbore stability using geomechanical parameters in one of the Iranian hydrocarbon reservoirs. Journal of Petroleum Exploration and Production Technology 12, 63–82. https://doi.org/10.1007/s13202-021-01399-5
[15] Beheshtian, S., Rajabi, M., Davoodi, SH., Wood, D., Ghorbani, H., Mohamadian, N., Ahmadi Alvar, M., S, Band, SH. (2022). Robust computational approach to determine the safe mud weight window using well-log data from a large gas reservoir, Marine and Petroleum Geology,Volume 142, 105772, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2022.105772
[16] Allawi, R.H., Al-Jawad, M.S. (2023). Wellbore stability analysis and selecting safe mud weight window for Mishrif reservoir in Southern Iraq. Arabian Journal of Geosciences, 16, 345. https://doi.org/10.1007/s12517-023-11435-9
[17]  Aadnoy, Bernt S. (2010). Modern Well Design: 2nd Edition. Petroleum Exploration and Development. 13:978-0-203-83613-2,6000 Broken Sound park way, NW
[18] Dashtian, H., Jafari, G., Koohi Lai, Z. Masihi, M., Sahimi, M., (2011). Analysis of Cross Correlations Between Well Logs of Hydrocarbon Reservoirs. Transp Porous Med (2011) 90: 445–464. DOI 10.1007/s11242-011-9794-x.
[19] Najibi, A., Ghafoori, M., Lashkaripour, G. and Asef, M., (2015). Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. Journal of Petroleum Science and EngineeringVolume 126, February 2015, Pages 78-82. https://doi.org/10.1016/j.petrol.2014.12.010
[20] Christaras, B., Auger, F. and Mosse, E., (1994). Determination of the moduli of elasticity of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods with direct static methods. Materials and Structures, 27(4), pp.222-228. https://doi.org/10.1007/BF02473036
[21] Ghafoori, M., Rastegarnia, A., Lashkaripour, G. (2018). Estimation of static parameters based on dynamical and physical properties in limestone rocks. Journal of African Earth Sciences 137 (2018) 22-31. https://doi.org/10.1016/j.jafrearsci.2017.09.008
[22] Azadpour, M., Shad Manaman, N., (2015), Determination of Pore Pressure from Sonic Log: a Case Study on One of Iran Carbonate Reservoir Rocks. Iranian Journal of Oil & Gas Science and Technology, Vol. 4, No. 3, pp. 37-50 https://doi.org/10.22050/ijogst.2015.10366
[23] Farsimadan, M., Dehghan, A. and Khodaei, M., 2020. Determining the domain of in situ stress around Marun Oil Field’s failed wells, SW Iran. Journal of Petroleum Exploration and Production Technology, 10(4), pp.1317-1326. https://doi.org/10.1007/s13202-020-00835-2
[24] Kidambi, T., Suresh Kumar, G., (2016), Mechanical Earth Modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. Journal of Petroleum Science and Engineering, 141, May 2016, 38-51. https://doi.org/10.1016/j.petrol.2016.01.003
[25] Vo, U., Chang, C., (2020), Geomechanical characterization of sedimentary basins using tectonic stress and strain. Geosciences Journal volume 24, 669–678. https://doi.org/10.1007/s12303-020-0006-8
[26] Li, Q., Aguilera, R., (2019), A correlation for estimating the biot coefficient. SPE Drilling & Compeletion, 1–13. https://doi.org/10.2118/195359-PA
[27] Aadney, B,. and Reza Looyeh, M., n.d. 2010, Petroleum rock mechanics.
[28] Al-Ajmi, A.M., and R.W. Zimmerman. (2006). Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion. International Journal of Rock Mechanics and Mining Sciences, 43(8): 1200-1211. doi:10.1016/j.ijrmms.2006.04.001.
[29] Anderson, E.M., (1951), The dynamics of faulting and dyke formation with applications to Britain.: Hafner Pub. Co. BA01728838