بررسی ژئومکانیکی یکی از مخازن ایران: از مدل‌سازی مکانیکی زمین تا پیش بینی پنجره‌گل

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی امیرکبیر، دانشکده مهندسی نفت

چکیده

بررسی پایداری دیواره چاه و کنترل فشار منفذی و وزن گل در حین عملیات حفاری یکی از مهمترین چالش هایی است که با کمک ژئومکانیک قابل حل است. وجود راهنمایی دقیق و مناسب برای پیش بینی وزن سیال حفاری و فشار منفذی سازند بسیار مهم است و می تواند سالانه میلیون ها دلار برای صنعت و دولت ها صرفه جویی کند. روش های مختلفی برای محاسبه پنجره گل بر اساس روابط تجربی وجود دارد. در این تحقیق یک مدل مکانیکی زمین (MEM) برای یکی از مخازن دریایی جنوب ایران ساخته شده و حداکثر و حداقل وزن گل حفاری مجاز ارائه شده است. ابتدا با استفاده از داده های لاگ پتروفیزیکی و تست های موجود، بر اساس روابط تجربی، خواص ژئومکانیکی سنگ محاسبه شده و حدس اولیه برای مدل زمین تهیه شد. سپس با استفاده از اطلاعات اضافی از گزارش‌های روزانه حفاری، گزارش‌های نهایی چاه، گزارش‌های نهایی زمین‌شناسی و گزارش‌های پایان چاه (DDR, FWR, FGR, EOWR) نتایج محاسبه‌شده تصحیح گردید. در نتیجه با به کارگیری یک معیار شکست سنگ، پنجره وزن گل بهینه محاسبه شده است. در این تحقیق بر اساس داده‌های موجود، روش معمول ساخت مدل زمین اصلاح شده و یک مدل مکانیکی به طور خاص برای سه سازند طراحی شده است. با مقایسه مدل نهایی تصحیح شده و حدس اولیه MEM، می توان به اهمیت اصلاح مدل حدس اولیه پی برد. MEM آماده شده می تواند برای بهینه سازی و انتخاب وزن گل مناسب در عمق انتخاب شده استفاده شود که در نتیجه آن می تواند مشکلات حفاری آتی و خطرات مرتبط را کاهش داده و یا حد بالایی پنجره گل را با استفاده از روش های مقاوم سازی دیواره چاه گسترش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Geomechanical Study of One of Iranian Reservoirs: From Mechanical Earth Modeling to Mud Window Prediction

نویسندگان [English]

  • Amir Zargarbashi
  • Farshid Yahyaee
  • Mohammad javad Ameri
Amirkabir university of technology, Petroleum engineering faculty
چکیده [English]

Investigating the stability of the wellbore wall and controlling pore pressure and mud weight during drilling operation is one of the most important challenges that can be solved with the help of geomechanics. The existence of accurate and appropriate guidance for predicting the weight of drilling fluid and formation pore pressure is very important and can save millions of dollars annually for the industry and governments. There are different methods for calculating the mud window based on empirical relationships. In this research, a mechanical earth model (MEM) for one of the offshore reservoirs in southern Iran has been constructed and the maximum and minimum allowable drilling mud weight is presented. First, by the use of available petrophysical log data and tests, based on empirical correlations, geomechanical properties of rock were calculated an initial guess for earth model has been prepared. Then, using additional information from daily drilling reports, final well reports, final geology reports and end of well reports (DDR, FWR, FGR, EOWR) calculated results were modified and corrected. As a result, by implementing a rock failure criterion, the optimal mud weight window has been calculated. In this research, based on the available data, the usual method of building the earth model has been modified and a mechanical earth model has tailored made for three formations. By comparing the final corrected model and the initial guess of MEM, the importance of modifying the initial guess model can be acknowledged. The prepared MEM may be used for optimizing and selecting the appropriate mud weight at the selected depth in which can reduce future drilling problems and associated risks or extend the upper limit of mud window using wellbore strengthening methods.

کلیدواژه‌ها [English]

  • wellbore stability
  • optimal mud weight window
  • pore pressure
  • rock failure criteria
  • mechanical earth model
  • drilling problems
[1]     Humand, M., & Ameri, M. J. (2018). Constructing a mechanical earth model and determining the optimal mud window for the Belal field 3rd National Petroleum Geomechanics Conference,  https://civilica.com/doc/923138
[2]     Afsari, M., Ghafoori, M., Roostaeian, M., Haghshenas, A., Ataei, A., & Masoudi, R. (2009). Mechanical earth model (MEM): An effective tool for borehole stability analysis and managed pressure drilling (case study). SPE Middle East Oil and Gas Show and Conference,
[3]     Wendt, A. S., Kongslien, M., Renlie, L., Pedersen, E. S., Vissapragada, B., Skomedal, E., & Sinha, B. K. (2007). Advanced mechanical earth modelling and wellbore-stability calculation using advanced sonic measurements: A case study on an HP/HT field in the Norwegian North Sea. SPE Annual Technical Conference and Exhibition,
[4]     Aghakhani Emamqeysi, M. R., Fatehi Marji, M., Hashemizadeh, A., Sanei, M., & Abdollahipour, A. (2022). 3D Numerical modeling of the effect of in-situ stress ratio on mud weight window in the drilling of the Zagros sedimentary basin. Journal of Petroleum Geomechanics, 5(3), 26-42.
[5]     Movahidnia, A. M., Qasim Al-Askari, Mohammad Kamal, and Yarahamdi, Mohsen. (2012). Estimation of optimal mud pressure using different failure criteria in deviated wells, case study: well 2sk 5 of Salman oil field. Oil Research, 23(73), 104-112. https://sid.ir/paper/114886/fa
[6]     Poursiami, H. (2013). Pore pressure modeling of hydrocarbon reservoir in southwest of Iran using well logging data. [7]     Rafieipour, S., Ghotbi, C., Pishwai, M., & Jalairi, H. (2012). Well stability analysis in one of the southwestern fields of Iran The first international oil, gas, petrochemical and power plant conference,  https://civilica.com/doc/158038
[8]     Taherdang Kou, R., Hamiyali, H., & Zargarbashi, M. (2014). Analysis of wellbore wall stability according to rock mechanics considerations (southwest of Iran) The third scientific conference on engineering of hydrocarbon reservoirs and upstream industries,  https://civilica.com/doc/265537
[9]     Mirani, M., & Habibnia, B. (2014). Wellbore Stability Analysis During Drilling Using Geomechanical Model and FLAC3D Software in Asmari Reservoir, Ahwaz Oil Field. Iranian journal of petroleum Geology, 4(1), 68-. https://www.magiran.com/paper/1466230
[10]     Alizadeh Saeed, P., Hasanpour Sedghi, M., & Kadkhodaei, A. (2016). Investigating the stability of the wall of oil wells with the help of STABView software Second International Congress of Earth Sciences and Urban Development,  https://civilica.com/doc/526447
[11]     Zain-Ul-Abedin, M., & Henk, A. (2020). Building 1D and 3D mechanical earth models for underground gas storage—A case study from the Molasse Basin, Southern Germany. Energies, 13(21), 5722.
[12]     Mohammed, A. K., & Selman, N. S. (2020). Building 1D mechanical earth model for Zubair oilfield in Iraq. J Eng, 26(5).
[13]     Abdulaziz, A. M., Abdulridha, H. L., Dahab, A. S. A., Alhussainy, S., & Abbas, A. K. (2021). 3D mechanical earth model for optimized wellbore stability, a case study from South of Iraq. Journal of Petroleum Exploration and Production Technology, 11(9), 3409-3420.
[14]     Kidambi, T., & Kumar, G. S. (2016). Mechanical earth modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. Journal of Petroleum Science and Engineering, 141, 38-51.
[15]     Mursalin, M., Romario, F., Setiawan, A., Firmansyah, D., & Negara, B. J. K. (2021). Implementation of Mechanical Earth Model in Predicting the Maximum Water Injection Flow Rate in Mature Field. Jurnal IATMI.
[16]     Goodman, H. E., & Connolly, P. (2007). Reconciling subsurface uncertainty with the appropriate well design using the mechanical Earth model (MEM) approach. SPE Nigeria Annual International Conference and Exhibition,
[17]     Oruji, M., and Ameri Shahrabi, Javad. (2016). Determining the optimal drilling route in one of the fields of the Persian Gulf using the earth mechanical model. Oil Research, 27(95), 134-146. https://sid.ir/paper/115039/fa
[18]     Zakeri Moghadam, S., Ahmadi Rad, B., & Badri, F. (2018). Providing a mechanical earth model to determine the appropriate depth for hydraulic fracture (a case study in one of the oil fields in western Iran) 3rd National Petroleum Geomechanics Conference,  https://civilica.com/doc/1031433
[19]     Sharifi, J., Sekoti Diarjan, M., Ebrahimi, M., & Hafezi Moghadas, N. (2016). Presenting the mechanical earth model for geomechanical purposes using petrophysical logs The 9th Conference of Engineering Geology and Environment of Iran,  https://civilica.com/doc/583065
[20]     Mansouri, Y., Ameri, M. J., Kamal Qasem al-Sakri, M., & Rahimzadeh Kiwi, I. (2015). Improving the stability of the well using the mechanical earth model: (a case study in one of the fields located in the Persian Gulf) The first petroleum geomechanics conference,  https://civilica.com/doc/384606
[21]     Narimizadeh, L., & Abdideh, M. (2012). Analysis of reservoir rock fractures by the use of mechanical earth model (MEM) The 16th conference of the Geological Society of Iran,  https://civilica.com/doc/181558
[22]     McCann, D., & Entwisle, D. (1992). Determination of Young’s modulus of the rock mass from geophysical well logs. Geological Society, London, Special Publications, 65(1), 317-325.
[23]     Ahmadinejad, A., & Khosravanian, R. (2017). Determination of Mud Weight Window Based on Analytical and Numerical Analyses.
[24]     Knöll, L. O. (2016). The process of building a mechanical earth model using well data University of Leoben].
[25]     Swift, S. A., & Bower, A. S. (2003). Formation and circulation of dense water in the Persian/Arabian Gulf. Journal of Geophysical Research: Oceans, 108(C1), 4-1-4-21.
[26]     Fjær, E., Holt, R., Horsrud, P., Raaen, A., & Risne, A. (2008). Petroleum related rock mechanics, Elsevier. In: Amsterdam.
[27]     Zoback, M. D. (2010). Reservoir geomechanics. Cambridge university press.
[28]     Khaksar, A., Taylor, P. G., Fang, Z., Kayes, T., Salazar, A., & Rahman, K. (2009). Rock strength from core and logs, where we stand and ways to go. SPE Europec featured at EAGE Conference and Exhibition?,
[29]     Chang, C., Zoback, M. D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3-4), 223-237.
[30]     Golubev, A., & Rabinovich, G. (1976). Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. Prikl. Geofiz. Moskva, 73, 109-116.
[31]     Rahman, K., Khaksar, A., & Kayes, T. (2008). Minimizing sanding risk by optimizing well and perforation trajectory using an integrated geomechanical and passive sand-control approach. SPE Annual Technical Conference and Exhibition?, [32]     Plumb, R. (1994). Influence of composition and texture on the failure properties of clastic rocks. SPE/ISRM Rock Mechanics in Petroleum Engineering,
[33]     Eaton, B. A. (1975). The equation for geopressure prediction from well logs. SPE Annual Technical Conference and Exhibition?,
[34]     Zoback, M. D., Barton, C., Brudy, M., Castillo, D., Finkbeiner, T., Grollimund, B., Moos, D., Peska, P., Ward, C., & Wiprut, D. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7-8), 1049-1076.
[35]     Fjaer, E., Holt, R. M., Horsrud, P., & Raaen, A. M. (2008). Petroleum related rock mechanics. Elsevier.
[36]     Al-Ajmi, A. M., & Zimmerman, R. W. (2005). Relation between the Mogi and the Coulomb failure criteria. International Journal of Rock Mechanics and Mining Sciences, 42(3), 431-439.
[37]     Al-Ajmi, A. (2006). Wellbore stability analysis based on a new true-triaxial failure criterion KTH].