طراحی میدانی عملیات شکست هیدرولیکی در سازند ماسه سنگی (مطالعه موردی: چاه قائم در میدان گازی هیوگوتون آمریکا)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگاه صنعت نفت

2 دانشگاه یزد

3 مدیر گروه پژوهش و فناوری های حفاری و تکمیل چاه/پژوهشگاه صنعت نفت

چکیده

شکست هیدرولیکی یکی از مهم‌ترین فنّاوری‌های توسعه‌یافته در صنعت نفت است. در این مقاله،‌ طراحی عملیات شکست هیدرولیکی با استفاده از روش‌های تحلیلی در میدان گازی هیوگوتون در سازند ماسه‌سنگی با نفوذپذیری تقریباً کم انجام خواهد شد. طراحی به‌صورت گام‌به‌گام و شامل تخمین تنش و فشار، انتخاب پروپانت مناسب،‌ تعیین میزان هرز روی سیال،‌ حجم سیال موردنیاز،‌ فشارهای پمپاژ،‌ زمان پمپاژ،‌ تخمین هندسه و طول شکستگی مورد انتظار و بازدهی عملیات است. از نتایج آزمایش‌های درون‌چاهی ازجمله SRT، DFIT و ... و روش تحلیل فشار شکست به‌منظور بهینه‌سازی و کالیبراسیون پارامترهای طراحی استفاده شد. بر اساس طراحی، طول شکست هیدرولیکی به ft 500 و ارتفاع آن به ft 173 خواهد رسید. نتایج تحقیق با نتایج دو مدل عددی کاملا سه‌بُعدی و شبه‌سه‌بُعدی P3D با پارامترهای ورودی مشابه مقایسه شد. نتایج روش‌های عددی تطابق بسیار مناسب با انتظارات طراحی ارائه‌شده نشان داد. بطوریکه طول، ارتفاع و هندسه شکست، همچنین میزان توزیع پروپانت در شکستگی‌ها در مدل عددی هماهنگی خوبی با طراحی داشت. مدل P3D همچنین افزایش قابل توجه هدایت هیدرولیکی در شکست ایجاد شده را نشان می‌دهد. روند طراحی ارائه‌شده می‌تواند به‌عنوان یک راهنما برای طراحی موفق عملیات شکست هیدرولیکی مورداستفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Field design of hydraulic fracturing in a sandstone formation (Case study: A vertical well in Hugoton gas field in the USA)

نویسندگان [English]

  • Abolfazl Abdollahipour 1
  • Hamid Soltanian 1
  • Mohammad Fatehi Marji 2
  • Seyed Alireza Mortazavi 3
1 Research Institute of Petroleum Industry
2 Yazd University
3 Research Institute of Petroleum Industry
چکیده [English]

Summary
Hydraulic fracturing (HF) is one of the most important technologies ever developed by the oil industry. In this paper, a hydraulic fracture job is designed for Hugoton gas field in a relatively low permeability sandstone in a vertical well. A step by step procedure is introduced and followed to determine stresses, pressures, proper proppant selection, fluid loss volume, required volume of fracturing fluid, pumping duration and rates, geometry of the expected hydraulic fracture and job efficiency. The HF design is compared with numerical results which showed a good agreement. Based on the design parameters it is expected an HF half-length of 500 ft. height of 173 ft. could be achieved at the end of the treatment.
Introduction
Hydraulic fracturing is a widespread technology used in oil industry to enhance the production. The technology has given the opportunity the produce from many previously un-economic reservoirs. Unlike drilling technology which has been extensively developed in the past decades, most HF technology development was achieved in 1950s and 1960s. The developed design of HF can still be an important part of an HF design without the need of advanced numerical modeling. The classic HF design uses some simplifications that may reduce the accuracy of the method. This shortcoming may be overcame by complementary numerical modeling. However, the classic design is still an essential part of an HF design.
Methodology and Approaches
The first step in an HF design is determining in-situ stresses and pressures and making sure of their accuracy and reliability. The in-situ stresses were estimated based on empirical gradients. Then the results were calibrated by several well tests such as SRT, DFIT, etc. These tests’ results were also used to calibrate other inputs including pore pressure, lost circulation coefficient etc. An appropriate proppant type was selected based on the required permeability and the cost of the proppant.
Results and Conclusions
A complete schedule for HF job including injection volume, pump rate, Pad stage volume, proppant usage and fluid efficiency was designed and presented. Based on the design, a hydraulic fracture half-length of 500 ft. with 173 ft. height was expected. Comparison of results of a fully 3D numerical model (with similar input variables, already available from previous studies) and a P3D model (with exact input parameters) with expected design results showed a good agreement. The propagated fracture length and height and also proppant distribution in fractures of the numerical model are in agreement with the expected results. The design procedure proposed in this paper may be used as a guideline for a successful HF design of vertical wells.

کلیدواژه‌ها [English]

  • Filed design
  • Hydraulic fracturing
  • Vertical well
  • Hugoton gas field
  • SRT
  • DFIT
  • MiniFrac
Abdollahipour, A., 2015. Crack propagation mechanism in hydraulic fracturing procedure in oil reservoirs. University of Yazd.
Abdollahipour, A., Fatehi-Marji, M., Behnia, M., Soltanian, H., 2017. Using well tests in order to evaluate affecting parameters in hydraulic fracturing design, in: 2ndNational Conference on Petroleum Geomechanics. National Iranian Oil Company, Tehran, Iran.
Abdollahipour, A., Fatehi Marji, M., Yarahmadi-Bafghi, A., Gholamnejad, J., 2016a. Numerical investigation on the effect of crack geometrical parameters in hydraulic fracturing process of hydrocarbon reservoirs. J. Min. Environ.
Abdollahipour, A., Fatehi Marji, M., Yarahmadi-Bafghi, A., Gholamnejad, J., 2015. Simulating the propagation of hydraulic fractures from a circular wellbore using the Displacement Discontinuity Method. Int. J. Rock Mech. Min. Sci. 80, 281–291.
Abdollahipour, A., Marji, M.F., Yarahmadi-Bafghi, A., Gholamnejad, J., 2016b. A complete formulation of an indirect boundary element method for poroelastic rocks. Comput. Geotech. 74, 15–25.
Agarwal, R.G., 1979. Evaluation and performance prediction of low-permeability gas wells stimulated by massive hydraulic fracturing. SPE J. 31.
Barenblatt,. G.., 1962. The mathematical theory of equilibrium crack in brittle fracture. Adv. Appl. Mech. 7, 55–129.
Cherny, S., Chirkov, D., Lapin, V., Muranov, a., Bannikov, D., Miller, M., Willberg, D., Medvedev, O., Alekseenko, O., 2009. Two-dimensional modeling of the near-wellbore fracture tortuosity effect. Int. J. Rock Mech. Min. Sci. 46, 992–1000. doi:10.1016/j.ijrmms.2009.01.001
Cinco-Ley, H., 1982. Evaluation of hydraulic fracturing by transient pressure analysis methods, in: International Petroleum Exhibition and Technical Symposium. Beijing, China.
Crittendon, B.C., 1959. The mechanics of design and interpretation of hydraulic fracture treatments. J. Pet. Tech. 21–29.
Eaton, B., 1969. Fracture gradient prediction and its application in oilfield operations. J. Pet. Technol. 21, 1353–1360.
Economides, M.J., 1992. a practical companion to reservoir stimulation. Elsevier.
Economides, M.J., Nolte, K.G., 2000. Reservoir stimulation, 3rd ed. John Wiley & Sons Ltd, Baffins Lane, Chichester.
Einstein, A., 1906. Effect of particulate on viscosity. Annu. J. Phys. 19, 289.
Geertsma, J., DeKlerk, F., 1969. A rapid method of predicting width and extent of hydraulically induced fractures. J. Pet. Technol. 21, 1571–1581.
Ghassemi, A., Zhou, X.X., Rawal, C., 2013. A three-dimensional poroelastic analysis of rock failure around a hydraulic fracture. J. Pet. Sci. Eng. 108, 118–127. doi:10.1016/j.petrol.2013.06.005
Godbey, J., Hodges, H.D., 1958. Pressure measurements during hydraulic fracturing. Trans. AIME 213,65–69. 
Greetesma, J., de Klerk, F., 1969. A rapid method of predicting width and extent of hydraulic induced fractures. J.of pet. tech. 21, 1571–1581.
Griffith, A.A., 1921. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. London 221, 163–197.
Gruesbeck, C., Collins, R.E., 1978. Particle transport through perforations. SPE J. 22, 857–865.
Harrison, E., Kieschnick, W.F., McGuire, W.G., 1954. The mechanics of fracture induction and extension. Pet. Trans AIME 201, 252–263.
Howard, G.C., Fast, C.R., 1957. Optimum fluid characteristics for fracture extension. Drill. Prod. Pr. 24,261–270.
Hubbert, M.K., Willis, D.G., 1957. Mechanics of hydraulic fractruing. Trans. Am. Inst. Min. Met. Eng. 153–166.
Khristianovic, S.A., Zheltov, Y.P., 1955. Formation of vertical fractures by means of highly viscous liquid, in: Proc. 4th World Petroleum Congress.
Lacy, L.L., 1997. Dynamic rock mechanics testing for optimized fracture designs, in: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers., San Antonio, TX.
Montgomery, C., 2013. Fracturing Fluid Components. Eff. Sustain. Hydraul. Fract. 25–45. doi:10.5772/56422
Nagel, N.B., Sanchez-Nagel, M. a., Zhang, F., Garcia, X., Lee, B., 2013. Coupled Numerical Evaluations of the Geomechanical Interactions Between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formations. Rock Mech. Rock Eng. 46, 581–609. doi:10.1007/s00603-013-0391-x
Nolte, K., 1986. Determination of proppant and fluid schedules from fracturing pressure decline. Prod. Eng. 1, 255–265.
Nolte, K.G., 1986. A General Analysis of Fracturing Pressure Decline Analysis with Application to Three Models, in: SPE Formation Evaluation. pp. 571–583.
Nolte, K.G., Smith, M.B., 1981. Interpretation of fracturing pressures. J. Pet. Tech. 1765–1775.
Nordgren, R.P., 1972. Propagation of a vertical hydraulic fracture. SPE J. 12, 306–314.
Pereyra, V., Castillo, J., Devloo, P.R.B., Fernandes, P.D., Gomes, S.M., Bravo, C.M.A.A., Damas, R.G., 2006. A finite element model for three dimensional hydraulic fracturing. Math. Comput. Simul. 73, 142–155.
Perkins, T.K., Kern, L.R., 1961. widths of hydraulic fractures. J. Pet. Technol. 13, 937–949.
Pippin, L., 1970. Panhandle-Hugoton Field, Texas-Oklahoma-Kansas-the First Fifty Years, in: Geology of Giant Petroleum Fields. p. 217.
Simonson, E.R., Abou-Sayed, A.S., Clifton, R.J., 1978. Containment of massive hydraulic fractures. SPE J 18, 27–32.
Smith, M.B., Montgomery, C.T., 2015a. Hydraulic Fracturing. London.
Smith, M.B., Montgomery, C.T., 2015b. Ch. 3 “Design variables,” in: Abhijit, Y., D. (Ed.), Hydraulic Fracturing. Taylor & Francis Publication, New York.
Smith, M.B., Montgomery, C.T., 2015c. Ch. 4 “Rock Stresses,” in: Abhijit, Y., D. (Ed.), Hydraulic Fracturing. Taylor & Francis Publication, New York.
Smith, M.B., others, 1985. Stimulation design for short, precise hydraulic fractures. Soc. Pet. Eng. J. 25,371–379.
Sneddon, I., Elliot, H., 1964. The opening of a Griffith crack under internal. Q. Appl. Math. 4, 262–267.
Sneddon, I., Lowengrub, M., 1969. Crack problems in the classical theory of elasticity. john wiley & sons, New York.
Sneddon, I.N., 1951. Fourier transforms. McGraw-Hill Book Company, New York.
Valko, P., Economides, M.J., 1995. Hydraulic fracture mechanics. Wiley, New York.
Veatch, R.W.J., 1983. Overview of Current Hydraulic Fracturing Design and Treatment Technology. J Pet Technol 35, 677–687.
Yew, c., Jogi, P.N., 1978. The determination of Biot’s parameters for sandstones, Part I: static tests. Expl Mech. 18, 167–172.
Zhou, D., Zheng, P., He, P., Peng, J., 2016. Hydraulic fracture propagation direction during volume
fracturing in unconventional reservoirs. J. Pet. Sci. Eng. doi:10.1016/j.petrol.2016.01.028